Project description:Contamination of food products with mycotoxins such as aflatoxin B1 (AFB1) poses a severe risk to human health. Larvae of the black soldier fly (BSFL), Hermetia illucens (Diptera: Stratiomyidae), can successfully metabolize AFB1 without any negative consequences on their survival or growth. However, the underlying mechanisms that allow BSFL to metabolize AFB1 are unknown. In this study, five-day-old BSFL were fed with either a control or an AFB1-spiked (20 µg/kg) diet to elucidate the underlying mechanisms. Larval samples were collected at three timepoints (6 h, 24 h, and 72 h) and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of an AFB1-spiked diet resulted in an up-regulation of 357 and a down-regulation of 929 unique genes. Upregulated genes include multiple genes involved in AFB1 metabolism in other (insect) species. Downregulated genes were generally involved in the insects' growth, development, and immunity. BSFL possesses a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB1 without trade-offs on larval survival.
Project description:Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the Black soldier fly Hermetia illucens