Project description:The black soldier fly (Hermetia illucens) is important in antimicrobial peptides (AMP) research due to its exposure to diverse microbial environments. However, the impact of different fungal exposures on AMP abundance in H. illucens has not been thoroughly explored. Our study focused on basal conditions and interactions with three fungi: the non-pathogenic Candida tropicalis (isolated from larval gut), Saccharomyces cerevisiae, and the pathogenic Beauveria bassiana. Using RNA-seq and LC-MS/MS, we found that under standard conditions, the majority of AMPs belonged to the Lysozyme, Cecropin, and Defensin classes, with Defensins exhibiting the highest quantification levels. Exposure to any of the fungi upregulated AMP gene expression, indicating immune activation. Notably, exposure to C. tropicalis and B. bassiana led to notable downregulation of AMPs in H. illucens larvae compared to S. cerevisiae, suggesting these fungi may suppress or modulate the host immune response to aid their survival and colonization. The immune response of H. illucens larvae revealed that S. cerevisiae and B. bassiana trigger similar AMP pathways, whereas C. tropicalis elicits a distinct response with upregulation of Defensins and Cecropins. Lysozymes, known for their antibacterial and antifungal activity, were upregulated in response to S. cerevisiae and B. bassiana, but downregulated with C. tropicalis, potentially facilitating fungal survival in the larvae’s gut. This suggests that C. tropicalis adapts to reduce immune pressure, while B. bassiana may suppress AMPs to persist. Understanding these mechanisms opens possibilities for leveraging AMPs in combating C. tropicalis, which is implicated in human diseases.
Project description:Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the Black soldier fly Hermetia illucens
Project description:Contamination of food products with mycotoxins such as aflatoxin B1 (AFB1) poses a severe risk to human health. Larvae of the black soldier fly (BSFL), Hermetia illucens (Diptera: Stratiomyidae), can successfully metabolize AFB1 without any negative consequences on their survival or growth. However, the underlying mechanisms that allow BSFL to metabolize AFB1 are unknown. In this study, five-day-old BSFL were fed with either a control or an AFB1-spiked (20 µg/kg) diet to elucidate the underlying mechanisms. Larval samples were collected at three timepoints (6 h, 24 h, and 72 h) and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of an AFB1-spiked diet resulted in an up-regulation of 357 and a down-regulation of 929 unique genes. Upregulated genes include multiple genes involved in AFB1 metabolism in other (insect) species. Downregulated genes were generally involved in the insects' growth, development, and immunity. BSFL possesses a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB1 without trade-offs on larval survival.