Project description:Cross-feeding is fundamental to the diversity and function of microbial communities. However, identification of cross-fed metabolites is often challenging due to the universality of metabolic and biosynthetic intermediates. Here, we use 13C isotope tracing in peptides to elucidate cross-fed metabolites in cocultures of Saccharomyces cerevisiae and Lactococcus lactis. The community was grown on lactose as the main carbon source with either glucose or galactose fraction of the molecule labelled with 13C. Data analysis allowing for the possible mass-shifts yielded hundreds of peptides for which we could assign both species identity and labelling degree. The labelling pattern showed that the yeast utilized galactose and, to a lesser extent, lactic acid shared by L. lactis as carbon sources. While the yeast provided essential amino acids to the bacterium as expected, the data also uncovered a complex pattern of amino acid exchange. The identity of the cross-fed metabolites was further supported by metabolite labelling in the co-culture supernatant, and by diminished fitness of a galactose-negative yeast mutant in the community. Together, our results demonstrate the utility of 13C-based proteomics for uncovering microbial interactions.
Project description:Sulfate-reducing bacteria (SRB) colonize the guts of ~50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing (INSeq), RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy USA adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial 9-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for utilizing ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. While genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources, and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients, and a framework for examining how individuals lacking D. piger differ from those that harbor it. 8 samples total, 2 gropus of 4 mice: Proximal colon gene expression profiles of gnotobiotic mice colonized with an artificial gut community composed of 8 human gut species (group 1: NoDp) and from mice colonized with the same community plus D. piger (Dp). Mice were fed a HF/HS diet supplemented with 3% chondroitin sulfate. Animals were sacrificed 2 weeks after colonization
Project description:We developed a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S rRNA gene-targeting microarrays, we compared the compositions of sampled communities to those of inoculates propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in aeration basin and laboratory-cultured populations. Laboratory-cultured populations were enriched in Gammaproteobacteria. Enterobacteriaceae and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiaceae by high (50 mM) concentrations of chloroacetate. Microbial populations cultured with chloroacetate and D-threonine were more similar to sampled populations than thoes cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units was lower for laboratory cultures than for sampled populations, both flask and reactor systems cultured phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios. 46 samples, flask and reactor experiments were conducted in triplicate with two exceptions: [C2mim]Cl_flask and No-Carbon_flask treatments had only one sample (no replicates).