Project description:Critical role of immune metabolism in Staphylococcus aureus infection-driven myeloid-derived suppressor cells and disease tolerance
Project description:Critical role of immune metabolism in Staphylococcus aureus infection-driven myeloid-derived suppressor cells and disease tolerance
Project description:To study the effect of Radix Paeoniae Rubra decoction on tolerance of Staphylococcus aureus.The effect of Radix Paeoniae Rubra on the resistance of Staphylococcus aureus to oxacillin sodium was studied by millipore dilution method in this experiment.At the same time ,conducted on transcriptome analysis of Staphylococcus aureus related genes in Radix Paeoniae Rubra.And to detect the expression level of related genes of Staphylococcus aureus under the action of Radix Paeoniae Rubra by PCR technology.The tolerance of Staphylococcus aureus was decreased obviously when the concentration of Radix Paeoniae Rubra decoction was above 1mg/ml.The effect of Radix Paeoniae Rubra decoction on the expression of tolerance genes femB,pvL and gluM when the concentration of Radix Paeoniae Rubra decoction was above 4mg/ml.When rhe concentration of Radix Paeoniae Rubra is more than 1mg/ml,it can effectively reduce the resistance of Staphylococcus aureus to oxacillin sodium.The reason may be due to the effect of Radix Paeoniae Rubra on the resistance gene of Staphylococcus aureus.
Project description:Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs) that are critical for orchestrating the anti-inflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxic response through hypoxia-inducible factor-1 alpha (HIF-1α) were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted HIF-1α conditional knockout mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, scRNA-seq analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxic response genes. These findings support the importance of a glycolysis/HIF-1α axis in promoting G-MDSC anti-inflammatory activity and biofilm persistence during PJI.
Project description:Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs) that are critical for orchestrating the anti-inflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxic response through hypoxia-inducible factor-1 alpha (HIF-1α) were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted HIF-1α conditional knockout mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, scRNA-seq analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxic response genes. These findings support the importance of a glycolysis/HIF-1α axis in promoting G-MDSC anti-inflammatory activity and biofilm persistence during PJI.
Project description:Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs) that are critical for orchestrating the anti-inflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxic response through hypoxia-inducible factor-1 alpha (HIF-1α) were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted HIF-1α conditional knockout mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, scRNA-seq analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxic response genes. These findings support the importance of a glycolysis/HIF-1α axis in promoting G-MDSC anti-inflammatory activity and biofilm persistence during PJI.
Project description:Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs) that are critical for orchestrating the anti-inflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxic response through hypoxia-inducible factor-1 alpha (HIF-1α) were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted HIF-1α conditional knockout mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, scRNA-seq analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxic response genes. These findings support the importance of a glycolysis/HIF-1α axis in promoting G-MDSC anti-inflammatory activity and biofilm persistence during PJI.
Project description:Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics were examined using both quantitative proteomics and transposon sequencing. These screens indicated that arginine metabolism is involved in antibiotic tolerance within a biofilm and led to the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction was found to induce antibiotic tolerance via inhibition of protein synthesis. In a mouse skin infection model, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.
Project description:Staphylococcus aureus is an adaptable human pathogen causing life-threatening endocarditis and bacteraemia. Methicillin-resistant S. aureus (MRSA) is alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteraemia and vancomycin treatment failure is often associated with vancomycin-intermediate S. aureus strains termed VISA. The regulatory 3’ UTR of vigR mRNA contributes to vancomycin tolerance in the clinical VISA isolate JKD6008 and upregulates the lytic transglycosylase IsaA. Using MS2-affinity purification coupled with RNA sequencing (MAPS), we find that the vigR 3' UTR also interacts with mRNAs involved in carbon metabolism, amino acid biogenesis, cell wall biogenesis, and virulence. The vigR 3' UTR was found to repress dapE, a succinyl-diaminopimelate desuccinylase required for lysine and cell wall peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the vigR 3' UTR increased VISA virulence in a wax moth larvae model, and we find that an isaA mutant is completely attenuated in the larvae model. Sequence and structural analysis of the vigR 3' UTR indicates that the UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions (STAR repeats) that partly contribute sequence for the isaA interaction seed and may functionalise the 3’ UTR. Our findings reveal an extended regulatory network for vigR, uncovering a novel mechanism of regulation of cell wall metabolism and virulence in a clinical S. aureus isolate.
Project description:The two immune cell populations Myeloid-derived suppressor cells (MDSCs), monocytes (MONO) and neutrophils (PMNs) are difficult to differentiate because of shared surface marker expression. Here we utilize the integrin receptor CD11b combined with conventional Ly6G and Ly6C expression to more accurately separate cellular populations via FACS. Then we apply high-throughput RNA Sequencing to Ly6G+Ly6C+CD11bhigh MDSC, Ly6G+Ly6C+CD11blow PMN and Ly6G-Ly6C+ monocyte populations. A total of 6,466 genes were significantly differentially expressed in MDSCs vs. monocytes, whereas only 297 genes were significantly different between MDSCs and PMNs. A number of genes implicated in cell cycle regulation were identified, and in vivo EdU labeling revealed that over 75% of MDSCs proliferated locally at the site of S. aureus biofilm infection.