Project description:No targeted treatments are currently approved for HER2 exon 20 insertion-mutant lung adenocarcinoma patients. Mobocertinib (TAK-788) is a potent irreversible tyrosine kinase inhibitor (TKI) designed to target human epidermal growth factor receptor 2 (HER2/ERBB2) exon 20 insertion mutations. However, the function of mobocertinib on HER2 exon 20 insertion-mutant lung cancer is still unclear. Here we conducted systematic characterization of preclinical models to understand the activity profile of mobocertinib against HER2 exon 20 insertions. In HER2 exon 20 insertion-mutant cell lines, the IC50 of mobocertinib was higher than poziotinib and comparable with or slightly lower than afatinib, neratinib, and pyrotinib. Mobocertinib had the lowest HER2 exon 20 insertion IC50/wild-type (WT) EGFR IC50 ratio, indicating that mobocertinib displayed the best selectivity profile in these models. Also, mobocertinib showed strong inhibitory activity in HER2 exon 20YVMA allograft and patient-derived xenograft models. In genetically engineered mouse models, HER2 exon 20G776>VC lung tumors exhibited a sustained complete response to mobocertinib, whereas HER2 exon 20YVMA tumors showed only partial and transient response. Combined treatment with a second antibody-drug conjugate (ADC) against HER2, ado-trastuzumab emtansine (T-DM1), synergized with mobocertinib in HER2 exon 20YVMA tumors. In addition to the tumor cell autonomous effect, sustained tumor growth control derived from M1 macrophage infiltration and CD4+ T-cell activation. These findings support the ongoing clinical development of mobocertinib (NCT02716116) and provide a rationale for future clinical evaluation of T-DM1 combinational therapy in HER2 exon 20YVMA insertion-mutant lung adenocarcinoma patients. SIGNIFICANCE: This study elucidates the potent inhibitory activity of mobocertinib against HER2 exon 20 insertion-mutant lung cancer and the synergic effect of combined mobocertinib and T-DM1, providing a strong rationale for clinical investigation.
Project description:Activating mutations in ERBB receptors act as oncogenes in non-small cell lung cancer (NSCLC). Besides the more prevalent epidermal growth factor receptor (EGFR) activating mutations, oncogenic variants in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of NSCLC patients. HER2 oncogenic mutations in NSCLC predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinically approved and currently tested tyrosine kinase inhibitors are limited by either insufficient potency on exon 20 altered HER2 and/or their insufficient selectivity against EGFR wild type (EGFR WT) – a major cause of dose limiting toxicity. We report herein the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing EGFR WT. The new inhibitors presented in this study reduce tumor cell survival and proliferation in vitro, and result in regressions in in vivo preclinical xenograft models of HER2 exon 20 mutant NSCLC as well as inhibition of downstream signaling. Our results suggest that HER2 exon 20 insertion driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing EGFR WT. The new inhibitors described in this study pave the way for testing potent HER2 selective inhibitors in HER2 mutant NSCLC patients and may offer an additional therapeutic option for these patients.
Project description:We performed RNAseq to compare differential gene expression between CUTO17, a human non-small cell lung cancer cell line which harbours an EGFR exon 20 insertion mutation, with CUTO17PozR, a cell line dervied from CUTO17 cells with acquired drug resistance to the EGFR inhibitor poziotinib through long-term drug exposure.
Project description:Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1M-bM-^@M-^Ys expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer. Examination of genome-wide SMAD4 binding in 7-month-old Ptend/d mouse lung.
Project description:ERBB2 is an oncogenic driver with frequent gene mutations and amplification in human lung tumors and is an attractive target for lung cancer therapy. However, target therapies can be improved by understanding the in vivo mechanisms regulated by ERBB2 during lung tumor development. Here, we generated genetic mouse models to show that Erbb2 loss inhibited lung tumor development induced by deletion of Pten and Smad4. Transcriptome analysis showed that Erbb2 loss suppressed the significant changes of most of the induced genes by ablation of Pten and Smad4. Overlapping with ERBB2-associated human lung cancer genes further identified those ERBB2 downstream players potentially conserved in human and mouse lung tumors. Furthermore, MED24 was identified as a crucial oncogenic target of ERBB2 in lung tumor development. Taken together, ERBB2 is required for the dysregulation of cancer-related genes, such as MED24, during lung tumor development.
Project description:Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1’s expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer.
Project description:Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1’s expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer.
Project description:Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1 expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer. The microarray data includes two different ages of mouse lung samples. The microarray for the study on late stage was did on 12-month-old wild type mouse lungs and Ptend/dSmad4d/d mouse lung tumors. This study was used to identify the significantly changed genes between lung tumors and wild type lungs. The microarray for the study on early stage was did on 7-month-old wild type, Ptend/d and Ptend/dSmad4d/d mouse lungs. This study was used to identify the significantly changed driven genes before the lung tumor initiation and metastasis.