Project description:Tandem mass spectrometry analysis of Stenotrophomonas bentonitica BII-R7 cells grown in absence or presence of 2 mM sodium selenite and sampled at three different time-points.
Project description:Color vision in Drosophila is mediated by photoreceptors R7 and R8, which express various combinations of opsins Rh3, Rh4, Rh5 and Rh6 depending on their cellular identity. Most ommatidia are classified as either “pale” or “yellow” subtypes with pale ommatidia coordinately expressing Rh3 and Rh5—in R7 and R8 cells respectively—while yellow express Rh4 and Rh6. Subtype identity is established initially in R7 photoreceptors via a stochastic mechanism then transmitted to the R8 via an inductive signal to ensure paired opsin expression. To identify factors that may be involved in this process, we used RNA-Seq to detect genes that are differentially expressed in sevenless mutant retinas at 40 hours after puparium formation. Since loss of sevenless prevents R7 recruitment and specification, we reasoned that this approach would allow us to identify genes that are enriched in R7 cells during this critical time point. Furthermore, since it has previously been established that in the absence of R7 most R8s will adopt the yellow Rh6-expressing identity, this gives us the opportunity to identify genes which may inductive mechanism occurring in R8 cells.
Project description:The formation of neuronal connections requires the precise guidance of developing axons towards their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R-cells each. R cells fall into three classes, R1-R6, R7 and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R7 and R8 neurons as they extend into the brain.
Project description:Thermoacidophilic archaea are found in heavy metal-rich environments and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium. M. prunae, isolated from a smoldering heap on a uranium mine in Thuringen, Germany, could be viewed as a M-bM-^@M-^\spontaneous mutantM-bM-^@M-^] of M. sedula, an isolate from Pisciarelli solfatara near Naples, Italy. M. prunae tolerated U3O8 and U(VI) to a much greater extent than M. sedula. Within 15 minutes following exposure to M-bM-^@M-^\U(VI) shockM-bM-^@M-^], M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 minutes post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA. This suggested that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 minutes post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors. The study comprises 9 Samples, described in detail below. MprAU_MseAU: Transcriptional analysis of the response of Metallosphaera prunae (Mpr) and Metallosphaera sedula(Mse) to chemolithoautotrophic conditions (0.1 wt% Uranium octaoxide with CO2 supplementation in headspace). This experiment was done to identify the key terminal oxidases which responded to a Uranium oxide while doing inter-species comparison between Mpr and Mse. Transcriptional response of the terminal oxidase clusters proved that certain key genes play a role in the vastly different physiologies of these two species. MprN_MprU60: Transcriptional analysis of the response of Metallosphaera prunae (Mpr) to 60 min of Uranium shock. This experiment was done to analyze the differential transcription of Mpr cells challenged with 1 mM uranyl acetate shock (U shock) compared to normal growth. The Uranium cultures were harvested 60 min after the shock. MprN_MseN: Differential transcription of Metallosphaera species under normal growth conditions. This experiment was done to analyze the differential transcription of Mpr cells compared with Mse cells at mid log phase. MprN_MprU3h: Transcriptional response of Metallosphaera prunae (Mpr) to 3h of Uranium shock compared to normal growth. This experiment was done to analyze the differential transcription of Mpr cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 3 h after the shock. MseN_MseU15: Transcriptional response of Metallosphaera sedula (Mse) to 15 min of Uranium shock. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) compared to normal growth. The Uranium cultures were harvested 15 min after the shock. MseN_MseU60: Transcriptional response of Metallosphaera sedula to 60 min of Uranium shock. Mse cells were grown upto mid log phase after which the cells were subjected to U shock and harvested 60 min later. Biological repeats were done for both experimental conditions. MseN_MseU3h: Transcriptional response of Metallosphaera sedula (Mse) to 3h of Uranium shock compared to normal growth. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 3 h after the shock. MseU15_MseU60: Transcriptional response of Metallosphaera sedula to 15 min of Uranium shock compared with 60 min of Uranium shock. This experiment was done to analyze the differential transcription of Mse cells challenged with 1 mM uranyl acetate shock (U shock) . The Uranium cultures were harvested 15 min and 60 min after the shock. MprU3h_MseU3h: Differential transcription of Metallosphaera cells under Uranium shock. This experiment was done to analyze the differential transcription of Metallosphaera sedula (Mse) and Metallosphaera prunae (Mpr) challenged with 1 mM uranyl acetate.
Project description:The formation of neuronal connections requires the precise guidance of developing axons towards their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R-cells each. R cells fall into three classes, R1-R6, R7 and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R7 and R8 neurons as they extend into the brain. We used microarray analysis to measure gene expression changes when the transcription factor Runt is misexpressed in eye discs and conversely when eye discs are rendered mutant for the Senseless transcription factor.
Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison