Project description:Caldicellulosiruptor bescii is an anaerobic hyper thermophile that can utilize a wide range of substrates. However, inhibitors released from biomass can result in unfavorable growth conditions and limit bioconversion to products. Medium as well as intracellular pH are conditions critical for growth and prone to change in effect of fermentation end or by products such as, CO2, organic acids etc. Growth pH for C. bescii as currently reported is a narrow range of 6.8-7.3. In this study, we examined the physiological and systems level responses of C. bescii to growth at acidic pH. Samples collected from bottles, controlled batch, fed-batch and chemostat systems were subjected to growth, product and integrated omics profiling. It was discovered that in batch reactors, lowering pH from 7.2 to 6.0 at the mid-log phase, led to a significant increase in growth and product yields. Time course transcriptomics data collected from these batch reactors was analyzed to try and get a better understanding of the underlying mechanisms for improved growth.
Project description:Previously, we performed DNA array-based transcriptomic analysis of Clostridium acetobutylicum biofilm adsorbed onto fibrous matrix in batch fermentation. Here, to further shed light on the transcriptomic modulation of maturing Clostridium acetobutylicum biofilm, we performed the DNA array-based transcriptomic analysis in repeated-batch fermentation. Significant time course changes in expression levels were observed for the genes involved in amino acid metabolism, oligopeptide ABC transporter, nitrogen fixation, and various other processes.
Project description:RNA-Seq profiling of Methylomicrobium alcaliphilum strain 20Z grown in batch on methane. The RNA-Seq work is one part of a systems approach to characterizing metabolism of 20Z during growth on methane. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under O2 limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock. Four replicates of batch growth
Project description:RNA-Seq profiling of Methylomicrobium alcaliphilum strain 20Z grown in batch on methane. The RNA-Seq work is one part of a systems approach to characterizing metabolism of 20Z during growth on methane. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under O2 limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.