Project description:The domestic ferret (Mustela putorius furo) has been used as animal model for decades, largely because its susceptibility to infection with a large number of pathogens such as influenza virus, SARS Corona virus and Canine distemper virus. Despite its importance for biomedical research, little is known about the genome of the M. Furo. The number of reagents for molecular and immunological analysis is thus restricted. To circumvent this, we present here a parallel sequencing effort to produce an extensive EST dataset derived from a normalized ferret cDNA library made from mRNA from ferret blood, liver, lung, spleen and brain. We produced more than 500000 sequence reads that were assembled into over 15000 partial ferret transcripts. These ESTs were combined with the available ferret sequences in the GenBank to develop a ferret specific microarray platform. Using this array, we detected tissue specific expression patterns which were confirmed by quantitative real time PCR assays and comparison to orthologous transcription profiles of mouse and human. We also present a set of 41 ferret transcript with even transcription profile across the tested tissues, indicating their usefulness as housekeeping genes. This study paves way for development of additional reagents for analysis of the ferret model. Three biological replicates of blood, lung, spleen, liver and brain was hybridized to the ferret specific microarray.
Project description:The domestic ferret (Mustela putorius furo) has been used as animal model for decades, largely because its susceptibility to infection with a large number of pathogens such as influenza virus, SARS Corona virus and Canine distemper virus. Despite its importance for biomedical research, little is known about the genome of the M. Furo. The number of reagents for molecular and immunological analysis is thus restricted. To circumvent this, we present here a parallel sequencing effort to produce an extensive EST dataset derived from a normalized ferret cDNA library made from mRNA from ferret blood, liver, lung, spleen and brain. We produced more than 500000 sequence reads that were assembled into over 15000 partial ferret transcripts. These ESTs were combined with the available ferret sequences in the GenBank to develop a ferret specific microarray platform. Using this array, we detected tissue specific expression patterns which were confirmed by quantitative real time PCR assays and comparison to orthologous transcription profiles of mouse and human. We also present a set of 41 ferret transcript with even transcription profile across the tested tissues, indicating their usefulness as housekeeping genes. This study paves way for development of additional reagents for analysis of the ferret model.
Project description:The domestic ferret (ferret; Mustela putorius furo) is an important animal model for neuroscience and preclinical/veterinary medicine owing to its susceptibility to avian influenza and corona viruses. Nevertheless, there is a lack of in vitro ferret models, since immortal cell lines including induced pluripotent stem cells (iPSCs) of ferrets have been scarce. In this study, we established an induced pluripotent stem cell line from skin fibroblasts of a neonatal female ferret using a previously validated method in multiple mammalian species. The established line, fiPS-1, showed standard characteristics of pluripotency, but it showed an X chromosome instability characterized by the high emergence rate of aneuploid 39X cells from the original 40XX euploid cells.
Project description:Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Complementary approaches, including DNA methylation mapping and microarray expression profiling, were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated by quantitative RT-PCR, laser capture microdissection, in situ hybridization, and immunohistochemistry. Two genes with hypomethylated promoters, Igfbp6 and Foxs1, were upregulated in post-GDX adrenocortical neoplasms. The neoplastic cells also exhibited hypomethylation of the fetal adrenal enhancer of Sf1, an epigenetic signature that typifies descendants of fetal adrenal rather than gonadal cells. Expression profiling demonstrated upregulation of gonadal-like genes, including Spinlw1, Insl3, and Foxl2, in GDX-induced adrenocortical tumors of the mouse. One of these markers, FOXL2, was detected in adrenocortical tumor specimens from gonadectomized ferrets. These new markers may prove useful for studies of steroidogenic cell development and for diagnostic testing. Total RNA extracted from whole adrenal glands of gonadectomized and non-gonadectomized mice.
Project description:Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Complementary approaches, including DNA methylation mapping and microarray expression profiling, were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated by quantitative RT-PCR, laser capture microdissection, in situ hybridization, and immunohistochemistry. Two genes with hypomethylated promoters, Igfbp6 and Foxs1, were upregulated in post-GDX adrenocortical neoplasms. The neoplastic cells also exhibited hypomethylation of the fetal adrenal enhancer of Sf1, an epigenetic signature that typifies descendants of fetal adrenal rather than gonadal cells. Expression profiling demonstrated upregulation of gonadal-like genes, including Spinlw1, Insl3, and Foxl2, in GDX-induced adrenocortical tumors of the mouse. One of these markers, FOXL2, was detected in adrenocortical tumor specimens from gonadectomized ferrets. These new markers may prove useful for studies of steroidogenic cell development and for diagnostic testing.