Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X.
Project description:There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), "wild" populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double-digest restriction-site-associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment-genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties.
Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X. 70 samples were analysed with the Illumina platform Human660W-Quad v1.0 Genotyping BeadChip and are described herein.
Project description:Deep sequencing of mRNA from seven different tissues of Brassica oleracea Analysis of ploy(A)+ RNA of multiple different tissues of Brassica oleracea containing Bud, Callus, Root, Stem, Leaf, Flower and Silique.
Project description:We investigated the expression profiles and genomic organization of PP2Cs-encoding genes in Brassica oleracea. Analysis of cDNA macroarray transcription profiles for Brassica oleracea and Arabidopsis thaliana revealed significant differences in the expression of a gene encoding protein phosphatase 2C, ABI1, a member of the group A PP2C. To gain insight into the ABA signaling network conservation in a model plant and its crop relatives group A PP2C genes in B. oleracea have been identified and functionally characterized. Twenty homologous sequences were identified as putative members of the group A PP2Cs (BolC.PP2Cs). Phylogenetic analysis revealed that the B. oleracea homologues are closely related to the particular members of the A. thaliana PP2C family. The genetic analysis has corroborated the presence of 2 to 3 copies for almost all of the PP2Cs examined, which corresponded to the unique genes in the A. thaliana genome. Gene expression analyses showed that among 15 PP2Cs-encoding genes studied in B.oleracea, BolC.ABI2, BolC.HAB1, BolC.HAB2.a-c, and BolC.PP2CA.a were drought-induced. However, in contrary to AtPP2Cs, only BolC.ABI1.a-b, BolC.ABI2 and BolC.PP2CA.a were ABA-responsive at the time points tested. Our results indicate that in B. oleracea PP2C-based drought stress signaling has evolved distinctly in comparison to A. thaliana. It is hypothesized that different reactions of particular B. oleracea PP2C genes to the water stress and ABA treatment may indicate lower conservation of their specificity in stress-induced reversible phosphorylation-based protein network operating in B. oleracea and A. thaliana.
Project description:For a long time, Neanderthals were considered hunters of large mammals, whereas the diversification of the exploited faunal spectrum to include smaller taxa, including birds, was assumed to be specific to anatomically modern humans. In recent decades, archaeozoological analyses of faunal remains from layers associated with Middle Palaeolithic lithic industries have revealed traces of human manipulation of small taxa, indicating the exploitation of a wider range of animals than previously thought, including small or fast-moving animals such as molluscs, leporids and birds. These new data have challenged the view that Neanderthals did not exploit small animals, thereby narrowing the behavioral gap with anatomically modern humans. Nevertheless, the information currently available comes almost exclusively from southern Europe and the nature of Neanderthal small fauna exploitation in northern Europe remains largely unknown. The present study aims to fill this gap by applying archaeozoological methods, including detailed taphonomic and traceological analyses, to 118 bird remains recovered from levels containing Middle Palaeolithic industries at Scladina cave, southern Belgium. Analyses of proteomics were applied to clarify the taxonomic identity of two morphologically non-diagnostic elements. Compared to mammal remains, bird bones, most of which belong to the order Galliformes, are scarce at Scladina Cave. This is likely due to conservation bias. Traces of non-human predators or scavengers, suggest that mammalian carnivores are responsible for accumulating a considerable portion of the avian assemblage. In total, seven bird bones exhibit anthropogenic traces, and one element presents questionable traces. Various Galliformes and a cormorant were exploited likely for their meat, during MIS 5 and/or 6 and MIS 6. The terminal posterior phalanx (talon) of a raptor of the size of a pomarine eagle displays intense polishing that could be linked to human manipulation of this element (MIS 5 and/or 6), although in the absence of tool marks this remains hypothetical at this stage. On the radius of a Western capercaillie, two deep incisions may indicate bone working, and intense use-wear on one of the fractured ends indicates that the bone has been utilized, potentially on soft organic material (MIS 6). This study provides the first evidence of the exploitation of birds during the Middle Palaeolithic in Belgium and constitutes the only detailed archaeozoological analysis of bird material in northwestern Europe. The likely transformation and use of a bird bone is only the second example recovered from Neanderthal occupations. The novel taxa identified as Neanderthal prey highlight the plasticity of Neanderthal ecological behavior, adapting to different landscapes and climates and exploiting the full spectrum of locally available prey.
Project description:Gene expression changes during the initial stages of black spot disease caused by Alternaria brassicicola on Brassica oleracea (Brassica oleracea var. capitata f. alba, white cabbage) leaves were investigated with Arabidopsis thaliana oligonucleotide microarrays. Transcriptional profiling of infected B. oleracea leaves revealed that photosynthesis was the most negatively regulated biological process. The negative regulation of 6 photosynthesis-related genes, mainly the genes involved in the photosynthesis light reaction and Calvin cycle, was observed as early as 12 hours post infection (hpi). It progressed through 48-hpi stage, when 44 down-regulated photosynthesis-related genes were detected. The analyses of infected leaves at microscopic, ultrastructural and physiological levels supported the microarray-based observations and indicated that the photosynthetic processes are suppressed in B. oleracea as a result of the fungal infection.