Project description:Effect of induced Methylation on Nucleosome positioning in yeast. Mnase digested DNA from a control strain and a strain expressing the 4 murine DNMTs were extracted and sequenced on a hiseq 2000
Project description:We describe the genome-wide nucleosome profiles of four related yeast species. All species display the same global organization features first described in S. cerevisiae: a stereotypical nucleosome organization along genes, and the classification of promoters into these which contain or lack a pronounced Nucleosome Depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. This global similarity, however, does not reflect a static evolutionary pattern, as nucleosome positioning at specific genes diverged rapidly leaving practically no similarity between S. cerevisiae and C. glabrata orthologs (~50 Myr). We show that this rapid divergence in nucleosome positioning contrasts a conserved pattern of gene expression, consistent with the idea that divergence of nucleosome patterns has a limited effect on gene expression as many different configurations can support the same regulatory outcome.
Project description:We describe the genome-wide nucleosome profiles of four related yeast species. All species display the same global organization features first described in S. cerevisiae: a stereotypical nucleosome organization along genes, and the classification of promoters into these which contain or lack a pronounced Nucleosome Depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. This global similarity, however, does not reflect a static evolutionary pattern, as nucleosome positioning at specific genes diverged rapidly leaving practically no similarity between S. cerevisiae and C. glabrata orthologs (~50 Myr). We show that this rapid divergence in nucleosome positioning contrasts a conserved pattern of gene expression, consistent with the idea that divergence of nucleosome patterns has a limited effect on gene expression as many different configurations can support the same regulatory outcome. Nucleosomes from 4 different yeast species were isolated and sequenced using the Illumina GAII platform. Replicates were performed for 3 of the species
Project description:In order to test the effect of H3S57 phosphorylation on nucleosome positioning in yeast, nucleosome were mapped in a WT strain, a strain with H3S57A mutation (phospho absent) and a strain H3S57E mutation (phospho mimicking).
Project description:We explored the mechanism by which RdDM affects nucleosome positioning in Arabidopsis thaliana. We showed that POLV has a direct effect on nucleosomes through the SWI/SNF complex. We found that the AGO4-siRNA complex is involved in nucleosome positioning via IDN2. Moreover, the SWI/SNF complex is not required for DNA methylation in positioned nucleosomes. Instead, we found that DNA methylation is needed for nucleosome positioning in differentially methylated regions. Taken together, we propose a model where the RdDM pathway directs nucleosome positioning through DNA methylation to establish transcriptional gene silencing.