Project description:Clostridium difficile (C. difficile) strains belonging to PCR ribotype 027, PFGE type NAP1, REA type B1 and toxinotype III, termed NAP1/027, have been implicated in the increased frequency of outbreaks of Clostridium difficile-associated diarrhoea (CDAD) in North America and Europe. The NAP1/027 strains appears to be more virulent with an increased mortality and frequency of relapse. Current European C. difficile microarrays are designed to the first sequenced and annotated C. difficile complete genome - strain 630 (ribotype 12). A high density oligonucleotide microarray was designed to C. difficile 630 (CD630) sequence and extra probes corresponding to two PCR ribotypes O27 strains C. difficile R20291 and QCD-32g58 were also included. Comparative genomic hybridisation was used to identify markers of ribotype 027 strains and markers to identify CD630. Strains hybridised to the array included the most prevalent ribotypes found in the UK and Europe (106 and 001) as well as the emerging hypervirulent ribotype 078.
Project description:Clostridioides difficile is one of the most common nosocomial pathogens and a global public health threat. Upon colonization of the gastrointestinal tract, C. difficile is exposed to a rapidly changing polymicrobial environment and a dynamic metabolic milieu. Despite the link between the gut microbiota and susceptibility to C. difficile, the impact of synergistic interactions between the microbiota and pathogens on the outcome of infection is largely unknown. Here, we show that microbial cooperation between C. difficile and Enterococcus has a profound impact on the growth, metabolism, and pathogenesis of C. difficile.. Through a process of nutrient restriction and metabolite cross-feeding, E. faecalis shapes the metabolic environment in the gut to enhance C. difficile fitness and increase toxin production. These findings demonstrate that members of the microbiota, such as Enterococcus, have a previously unappreciated impact on C. difficile behavior and virulence.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.
Project description:The goal of this study is the discovery of (a) meaningful phylogenomic relationships among members of this B. cereus/B. anthracis group, and (b) reliable gene-phenotype associations, e.g. recognition of links between genomic traits and the ability of certain strains to cause various forms of disease. We also tried to elucidate genome evolution aspects that may lead to the emergence of variants that are capable (or have the potential) of causing anthrax-like disease. This large-scale comparative genomics approach is unprecedented for this taxonomic group. Dr. A. Hoffmaster (CDC) provided the PFGRC with 73 B. cereus and B. anthracis isolates from the CDC culture collection. Of these, 27 were isolated from patients with severe or systemic disease; ten isolates of this group were obtained from patients (welding factory workers) with anthrax-like disease or from the environment near their workplace. Another set of 26 represented isolates from food-born illnesses. Of the 26 gastrointestinal disease isolates (GIDI), 10 were obtained from patients with diarrhea, whereas another set of 10 had been shown to harbor the emetic (vomit) toxin gene by PCR. The rest of the group consisted of 20 isolates with various phenotypes. All strains were screened for their genomic content using the B. cereus/B. anthracis species microarray.
Project description:<p>The living and dried specimens in botanical collections play an important role in society for scientific and recreational purposes, offering the opportunity to obtain both macroscopic and molecular information for individual plants, ecosystems, and environmental studies. Untargeted metabolomics is an analytical approach that permits the simultaneous study of multiple small molecules present in an organism, which allows us to statistically compare different conditions of interest. Metabolomic approaches have been used on living specimens in botanical collections, but, until now, not on historical dried material. Using the Nicotiana genus herbaceous plant (tobacco) as a case study, we propose an untargeted metabolomic study to evaluate the potential of dried historical specimens as a source of metabolomic information on the past. The metabolomic profile from polar and less-polar/apolar aqueous extracts of four modern handmade tobacco cigars (split into wrapper, binder, and filler leaves), and a set of eight late-19th to early-20th century tobacco specimens (seven tobacco leaves and one snuff powder) from the collection of the Royal Botanical Gardens at Kew (London, UK) were analysed by liquid chromatography coupled to high resolution mass spectrometry. Results showed a wide range of polar and less-polar/apolar molecules which are preserved in dried botanical material, providing information optimal for metabolomic studies. The metabolomic profiles of historical dried samples were distinct enough to classify as Nicotiana tabacum or Nicotiana rustica, and showed differences based on geographic provenance or product transformation/processing. Statistical models based on the molecular data from the historical material permitted us to validate the labelling of the historical collection, which identified one possible mislabelled specimen and offered some clues as to the species of one unknown Nicotiana sample. Finally, metabolomic differences in profiles between Nicotiana tabacum and modern cigars showed that both share a large proportion of their metabolomic profile, where molecular differences could be possibly associated with both location of growth and anthropogenic transformation suffered by the plant in the last two centuries. This study demonstrates that dry botanical collections are a feasible source of information, and, if applied to a large set of individuals, conclusions may be drawn about the possible evolution and anthropogenic modification over time in plant material. The results are significant for disciplines interested in the history of plants, such as botany, history and archaeology.</p>
Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.