Project description:Microbiome target gene model is a Named Entity Recognition (NER) model that identifies and annotates microbiome target genes, phylogenetic marker genes or hypervariable regions in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with target genes metadata from literature. For more information, please refer to the following blogs: http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications
2022-02-21 | MODEL2202170005 | BioModels
Project description:eDNA metabarcoding of different ciliate marker genes for salmon farm monitoring
Project description:Fluid-phase endoeytosis (pinocytosis) kinetics were studied in Dictyostelium discoideum amoebae from the axenic strain Ax-2 that exhibits high rates of fluid-phase endoeytosis when cultured in liquid nutrient media. Fluorescein-labelled dextran (FITC-dextran) was used as a marker in continuous uptake- and in pulse-chase exocytosis experiments. In the latter case, efflux of the marker was monitored on cells loaded for short periods of time and resuspended in marker-free medium. A multicompartmental model was developed which describes satisfactorily fluid-phase endocytosis kinetics. In particular, it accounts correctly for the extended latency period before exocytosis in pulse-chase experiments and it suggests the existence of some sorts of maturation stages in the pathway.
Project description:Fluid-phase endoeytosis (pinocytosis) kinetics were studied in Dictyostelium discoideum amoebae from the axenic strain Ax-2 that exhibits high rates of fluid-phase endoeytosis when cultured in liquid nutrient media. Fluorescein-labelled dextran (FITC-dextran) was used as a marker in continuous uptake- and in pulse-chase exocytosis experiments. In the latter case, efflux of the marker was monitored on cells loaded for short periods of time and resuspended in marker-free medium. A multicompartmental model was developed which describes satisfactorily fluid-phase endocytosis kinetics. In particular, it accounts correctly for the extended latency period before exocytosis in pulse-chase experiments and it suggests the existence of some sorts of maturation stages in the pathway.