Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data. PacBio long reads and Illumina short reads were generated from the same hESC cell line H1. PacBio reads were error-corrected by Illumina reads to identify transcripts. rSeq is used to estimate gene/transcript abundance of the identified transcriptome.
Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Rapidly increased studies by third-generation sequencing [Pacific Biosciences (Pacbio) and Oxford Nanopore Technologies (ONT)] have been used in all kinds of research areas. Among them, the plant full-length single-molecule transcriptome studies were most used by Pacbio while ONT was rarely used. Therefore, in this study, we developed ONT RNA-sequencing methods in plants. We performed a detailed evaluation of reads from Pacbio and Nanopore PCR cDNA (ONT Pc) sequencing in plants (Arabidopsis), including the characteristics of raw data and identification of transcripts. We aimed to provide a valuable reference for applications of ONT in plant transcriptome analysis.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of T cell functional plasticity as it relates to human health and disease. However, To our knowledge, no long-read transcriptome reference exists for activated human CD4 T cells. To begin to fill this gap, we purified CD4 T cells from the peripheral blood of a healthy female donor and activated these cells with anti-CD3/CD28 beads to generate populations of early activated (4hr), mid-activated (16hr), blasting (48hr) and proliferating (120hr) CD4 T cells. From each of these time points, we obtained high-quality RNA (RIN>9) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis, which we hope will serve as a reference for future transcriptomic studies of these populations. UCSC genome browser tracks for these samples can be accessed at: http://genome.ucsc.edu/cgi-bin/hgHubConnect?hgHub_do_redirect=on&hgHubConnect.remakeTrackHub=on&hgHub_do_firstDb=on&position=chr1:206,903,317-206,921,941&hubUrl=http://162.215.210.70/~tracks/Mitchell_IsoSeq_Stim/hub.txt