Project description:We report the application of transcriptome sequencing technology for high-throughput profiling of Serratia marcescens for producing prodigiosin. By obtaining over 163 million bases of sequence from Serratia marcescens genome DNA, we generated transcriptome -state maps of Serratia marcescens 12h cells, 24h cells, and 36h cells at 30C and 37C,respectively. We explored the mechanism of S. marcescens response temperature regulation at the transcription level through transcriptome sequencing technology. We found that the pig gene cluster at low temperature would favor at the transcriptional level, however, higher temperature resulting in instability and loss of enzyme activity. Numerous amino acid metabolic pathways involved in prodigiosin biosynthesis in S. marcescens responded to temperature changes, and metabolic fluxes were directed towards prodigiosin biosynthesis. At the same time, quorum sensing, two-component regulatory system and sRNA were stimulated by temperature to regulate PG biosynthesis and involve strain virulence and exclusive genes. Moreover, inhibition factors was the one reason for S. marcescens incapable synthesis of prodigiosin at 37C. This study laid a good foundation for understanding the biological functions of prodigiosin, improving the temperature tolerance of industrial strains, and excavating temperature-sensitive regulatory elements.
Project description:To investigate the molecular basis of fluctuating temperature induced phenotypic plasticity, we ran genome-wide transcriptomic analysis on Drosophila melanogaster subjected to acclimation at constant (19 +/- 0 degree Celcius) and fluctuating (19 +/- 8 degree Celcius) temperatures and contrasted the induction of molecular mechanisms in adult males, adult females, and larvae. We investigated whether fluctuations act by permanently activating the involved mechanisms, or whether fluctuations repeatedly activate and repress mechanisms, during the hot (or heating) and the cold (or cooling) phase of thermal fluctuations. We show that adult flies acclimated to fluctuating temperatures tolerate high temperatures better than the constant temperature acclimated controls. Differential gene expression indicated that responses to thermal variability rely partly on life stage and sex specific mechanisms. Our results show that some of the involved mechanisms were permanently activated, while others tracked the thermal fluctuations. Further, for a number of genes, fluctuating temperature resulted in canalization of gene expression. Molecular mechanisms related to environmental sensing and chromatin reorganization seems to be important components of adaptive responses to thermal variability.
Project description:Decomposition of lignin-rich wood by fungi drives nutrient recycling in woodland ecosystems. Fluctuating abiotic conditions are known to promote the functioning of ecological communities and ecosystems. In the context of wood decay, fluctuating temperature increases decomposition rates. Metabolomics, in tandem with other ‘omics tools, can highlight the metabolic processes affected by experimental treatments, even in the absence of genome sequences and annotations. Globally, natural wood decay communities are dominated by the phylum Basidiomycota. We examined the metabolic responses of Mucidula mucida, a dominant constituent of pioneer communities in beech branches in British woodlands, and Exidia glandulosa, a stress-selected constituent of the same communities, in response to constant and diurnally cycling temperature. We applied untargeted metabolomics and proteomics to beech wood blocks, colonised by M. mucida or E. glandulosa and exposed to either diurnally cycling (mean 15 ± 10°C) or constant (15°C) temperature, in a fully factorial design. Metabolites and proteins linked to lignin breakdown, the citric acid cycle, pentose phosphate pathway, carbohydrate metabolism, fatty acid metabolism and protein biosynthesis and turnover were under-enriched in fluctuating, compared to stable temperatures, in the generalist M. mucida. Conversely E. glandulosa showed little differential response to the experimental treatments. By demonstrating temperature dependant metabolic signatures related to nutrient acquisition in a generalist wood decay fungus, we provide new insights into how abiotic conditions can affect community-mediated decomposition and carbon turnover in forests. We show that mechanisms underpinning important biogeochemical processes can be highlighted using untargeted metabolomics and proteomics in the absence of well-annotated genomes.
Project description:We used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures With global climate change temperature means and variability are expected to increase. Thus, exposures to elevated temperatures are expected to become an increasing challenge for terrestrial ectotherm populations. While evolutionary adaptation seems to be constrained or proceed at an insufficient pace, many populations are expected to rely on phenotypic plasticity (thermal acclimation) for coping with the predicted changes. However, the effects of fluctuating temperature on the molecular mechanisms and the implications for heat tolerance are not well understood. To understand and predict consequences of climate change it is important to investigate how different components of the thermal environment, including fluctuating thermal conditions, contribute to changes in thermal acclimation. In this study we investigated the impact of mean and diurnal fluctuation of temperature on heat tolerance in Drosophila melanogaster and on the underlying molecular mechanisms in adult male flies. Flies from two constant and two ecologically relevant fluctuating temperature regimes were tested for their critical thermal maxima (CTmax) and associated global gene expression profiles at benign and thermally stressful conditions. Both temperature parameters contributed independently to the thermal acclimation, with regard to heat tolerance as well as the global gene expression profile. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to be essential for our understanding of thermal adaptation. Thus, high temperature acclimation ability might not be measured correctly and might even be underestimated at constant temperatures. Our data suggests that the particular mechanisms affected by thermal fluctuations are related to phototransduction and environmental sensing. Thus genes and pathways involved in those processes are likely to be of major importance in a future warmer and more fluctuating climate. Eight experimental groups were analyzed in triplicate, in total 24 Affymetrix GeneChip Drosophila Genome 2.0 Arrays
Project description:Transcriptome changes were investigated for Euphorbia esula (leafy spurge) seeds with a focus on the effect of constant and diurnal fluctuating temperature on dormancy and germination. Leafy spurge seeds do not germinate when incubated for 21 days at 20°C constant temperatures, but nearly 30% germinate after 21 days under fluctuating temperatures 20:30°C (16:8 h). Incubation at 20°C for 21 followed by 20:30°C resulted in approximately 63% germination in about 10 days. A cDNA microarray representing approximately 22,000 unique sequences was used to profile transcriptome changes.
Project description:Adult male fish were exposed to the various temperature acclimation conditions as outlined in the published manuscript and RNA was extracted from fish at each time point as listed in the experiment set description. Abstract: Eurythermal ectotherms commonly thrive in environments that expose them to large variations in temperature on daily and seasonal bases. The roles played by alterations in gene expression in enabling eurytherms to adjust to these two temporally distinct patterns of thermal stress are poorly understood. We used cDNA microarray analysis to examine changes in gene expression in a eurythermal fish, Austrofundulus limnaeus, subjected to long-term acclimation to constant temperatures of 20, 26 and 37 degrees C and to environmentally realistic daily fluctuations in temperature between 20 degrees C and 37 degrees C. Our data reveal major differences between the transcriptional responses in the liver made during acclimation to constant temperatures and in response to daily temperature fluctuations. Control of cell growth and proliferation appears to be an important part of the response to change in temperature, based on large-scale changes in mRNA transcript levels for several key regulators of these pathways. However, cell growth and proliferation appear to be regulated by different genes in constant versus fluctuating temperature regimes. The gene expression response of molecular chaperones is also different between constant and fluctuating temperatures. Small heat shock proteins appear to play an important role in response to fluctuating temperatures whereas larger molecular mass chaperones such as Hsp70 and Hsp90 respond more strongly to chronic high temperatures. A number of transcripts that encode for enzymes involved in the biosynthesis of nitrogen-containing organic osmolytes have gene expression patterns that indicate a possible role for these 'chemical chaperones' during acclimation to chronic high temperatures and daily temperature cycling. Genes important for the maintenance of membrane integrity are highly responsive to temperature change. Changes in fatty acid saturation may be important in long-term acclimation and in response to fluctuating temperatures; however cholesterol metabolism may be most critical for short-term acclimation to fluctuating temperatures. The variable effect of temperature on the expression of genes with daily rhythms of expression indicates that there is a complex interaction between the temperature cycle and daily rhythmicity in gene expression. A number of new hypotheses concerning temperature acclimation in fish have been generated as a result of this study. The most notable of these hypotheses is the possibility that the high mobility group b1 (HMGB1) protein, which plays key roles in the assembly of transcription initiation and enhanceosome complexes, may act as a compensatory modulator of transcription in response to temperature, and thus as a global gene expression temperature sensor. This study illustrates the utility of cDNA microarray approaches in both hypothesis-driven and 'discovery-based' investigations of environmental effects on organisms. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:We used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures With global climate change temperature means and variability are expected to increase. Thus, exposures to elevated temperatures are expected to become an increasing challenge for terrestrial ectotherm populations. While evolutionary adaptation seems to be constrained or proceed at an insufficient pace, many populations are expected to rely on phenotypic plasticity (thermal acclimation) for coping with the predicted changes. However, the effects of fluctuating temperature on the molecular mechanisms and the implications for heat tolerance are not well understood. To understand and predict consequences of climate change it is important to investigate how different components of the thermal environment, including fluctuating thermal conditions, contribute to changes in thermal acclimation. In this study we investigated the impact of mean and diurnal fluctuation of temperature on heat tolerance in Drosophila melanogaster and on the underlying molecular mechanisms in adult male flies. Flies from two constant and two ecologically relevant fluctuating temperature regimes were tested for their critical thermal maxima (CTmax) and associated global gene expression profiles at benign and thermally stressful conditions. Both temperature parameters contributed independently to the thermal acclimation, with regard to heat tolerance as well as the global gene expression profile. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to be essential for our understanding of thermal adaptation. Thus, high temperature acclimation ability might not be measured correctly and might even be underestimated at constant temperatures. Our data suggests that the particular mechanisms affected by thermal fluctuations are related to phototransduction and environmental sensing. Thus genes and pathways involved in those processes are likely to be of major importance in a future warmer and more fluctuating climate.
Project description:1. Decomposition of lignin-rich wood by fungi drives nutrient recycling in woodland ecosystems. Fluctuating abiotic conditions are known to promote the functioning of ecological communities and ecosystems. In the context of wood decay, fluctuating temperature increases decomposition rates. Metabolomics, in tandem with other ‘omics tools, can highlight the metabolic processes affected by experimental treatments, even in the absence of genome sequences and annotations. Globally, natural wood decay communities are dominated by the phylum Basidiomycota. We examined the metabolic responses of Mucidula mucida, a dominant constituent of pioneer communities in beech branches in British woodlands, and Exidia glandulosa, a stress-selected constituent of the same communities, in response to constant and diurnally cycling temperature. 2. We applied untargeted metabolomics and proteomics to beech wood blocks, colonised by M. mucida or E. glandulosa and exposed to either diurnally cycling (mean 15 ± 10°C) or constant (15°C) temperature, in a fully factorial design. 3. Metabolites and proteins linked to lignin breakdown, the citric acid cycle, pentose phosphate pathway, carbohydrate metabolism, fatty acid metabolism and protein biosynthesis and turnover were under-enriched in fluctuating, compared to stable temperatures, in the generalist M. mucida. Conversely E. glandulosa showed little differential response to the experimental treatments. 4. Synthesis. By demonstrating temperature dependant metabolic signatures related to nutrient acquisition in a generalist wood decay fungus, we provide new insights into how abiotic conditions can affect community-mediated decomposition and carbon turnover in forests. We show that mechanisms underpinning important biogeochemical processes can be highlighted using untargeted metabolomics and proteomics in the absence of well-annotated genomes.
Project description:Transcriptional profiling of P. pacificus young adult worms exposed to pathogen Serratia marcescens for 4 hours versus age-matched worms exposed to control lab food E. coli OP50. The goal was to identify genes regulated in response to pathogen. The broader goal of study was to study evolution of pathogen response by comparing this expression profile to that obtained by exposing the nematode C. elegans to the same pathogen. Other experiments which are a part of this study include expression profiling of C. elegans and P. pacificus on other pathogens including , Bacillus thuringiensis DB27, Serratia marcescens and Xenorhabdus nematophila. One-condition experiments. P. pacificus young adults: Exposed to Serratia marcescens versus exposed to E. coli OP50 : 4 hours. 4 biological replicates for each condition, including 2 dye-swaps.
Project description:In order to identify mRNA and sRNAs associated with the RNA-binding protein Hfq in Serratia marcescens strain Db10, Hfq-bound RNA was immunoprecipitated from a strain encoding an Hfq-3FLAG fusion protein at the normal location and sequenced, in parallel with the wild type strain (no fusion) as negative control. Additionally global transcriptional start site mapping was performed on total RNA, with or without TEX treatment, isolated from wild type Serratia marcescens. The data was used to identify regions of mRNA and sRNAs associated with Hfq in this organism. Associated work in Serratia marcescens Db10, an opportunistic bacterial pathogen, has shown that Hfq is essential for virulence in several models and exerts a wide-ranging impact on the transcriptome and, particularly, genes encoding virulence factors.