Project description:To explore the molecular mechanism of low-K tolerance in sugarcane, we have employed whole genome microarray expression profiling to identify sugarcane genes in response to low-K stress. seeldings were transplanted to low-K hydroponic (containing 0.1 mmol.L-1 K+) and the roots were collected at 0 (CK), 8, 24 and 72 h after exposure to low-K condition. The expressions of genes in sugarcane roots were detected by microarray analysis. Totally 1545 genes at 8 h, 1053 genes at 24 h and 3155 at 72 h differentially expressed under low-K stress, when the 2-fold change was adopted as the threshold for determining differentially expressed genes. Among these genes, a certain amount of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathway were detected to differentially express. Seeldings were treated with low-K hydroponic (containing 0.1 mmol.L-1 K+) and after 0 (CK), 8, 24 and 72 h exposure to low -K stress, the roots of sugarcane were collected. Four independent experiments were performed using roots collected at different time points
Project description:To explore the molecular mechanism of low-K tolerance in sugarcane, we have employed whole genome microarray expression profiling to identify sugarcane genes in response to low-K stress. seeldings were transplanted to low-K hydroponic (containing 0.1 mmol.L-1 K+) and the roots were collected at 0 (CK), 8, 24 and 72 h after exposure to low-K condition. The expressions of genes in sugarcane roots were detected by microarray analysis. Totally 1545 genes at 8 h, 1053 genes at 24 h and 3155 at 72 h differentially expressed under low-K stress, when the 2-fold change was adopted as the threshold for determining differentially expressed genes. Among these genes, a certain amount of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathway were detected to differentially express.
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 2. Keywords = sugarcane Keywords = cold Keywords = nylon arrays
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 1. Keywords = sugarcane, cold, nylon arrays
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 1. Keywords = sugarcane, cold, nylon arrays Keywords: time-course
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 2. Keywords = sugarcane Keywords = cold Keywords = nylon arrays Keywords: time-course
Project description:Sugarcane is an important crop in tropical regions of the world, producing a very large biomass and accumulating large amounts of sucrose in the stem. In this study, we present the first report of transcript profiling using the GeneChip Sugarcane Genome Array. We have identified transcripts that are differentially expressed in the sugarcane stem during development by expression profiling using the array and total RNA derived from three disparate stem tissues (meristem, internodes 1-3; internode 8; internode 20) from four replicates of the sugarcane variety Q117 grown in the field. We have identified 119 transcripts that were highly differentially expressed with stem development and have characterised members of the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families which displayed coordinated expression during stem development. In addition, we determined that many other transcripts involved in cell wall metabolism and lignification were also co-expressed with members of the CesA and Csl gene families, offering additional insights into the dynamics of primary and secondary cell wall synthesis in the developing sugarcane stem. Keywords: stem development profile
Project description:In order to increase our understanding on the epigenetic regulation in response to abiotic stresses in plants, sRNA regulation in sugarcane plants submitted to drought stress was analyzed. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. An enrichment of 22-nt sRNA species was observed in leaf libraries. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profile of eight miRNA was verified in leaf samples by stem-loop qRT-PCR assay. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. 22-nt miRNA triggered siRNA-candidates production by cleavage of their targets in response to drought stress. Some genes of sRNA biogenesis were down-regulated in tolerant genotypes and up-regulated in sensitive in response to drought stress. Our analysis contributes to increase the knowledge on the roles of sRNA in epigenetic-regulatory pathways in sugarcane submitted to drought stress. Screenning of sRNA transcriptome of sugarcane plants under drougth stress