Project description:In this study, we were interested to get deeper insights into the molecular mechanisms that govern the formation and selection of the different colony morphologies in Mycobacterium abscessus strains, including the potential reversibility of the rough (R) phenotype into a smooth (S) phenotype. We used next generation sequencing (NGS) and micro-array / RNAseq approaches to determine the genome sequences and transcriptomic profiles of three isogenic S/R strain couples of M. abscessus. One clinical isolate strain named CF and two collection strains referred as 19977-AT and 19977-IP.
Project description:A comparative genomic approach was used to identify large sequence polymorphisms among Mycobacterium avium isolates obtained from a variety of host species. DNA microarrays were used as a platform for comparing mycobacteria field isolates with the sequenced bovine isolate Mycobacterium avium subsp. paratuberculosis (Map) K10. ORFs were classified as present or divergent based on the relative fluorescent intensities of the experimental samples compared to Map K10 DNA. Map isolates cultured from cattle, bison, sheep, goat, avian, and human sources were hybridized to the Map microarray. Three large deletions were observed in the genomes of four Map isolates obtained from sheep and four clusters of ORFs homologous to sequences in the Mycobacterium avium subsp. avium (Maa) 104 genome were identified as being present in these isolates. One of these clusters encodes glycopeptidolipid biosynthesis enzymes. One of the Map sheep isolates had a genome profile similar to a group of Mycobacterium avium subsp. silvaticum (Mas) isolates which included four independent laboratory stocks of the organism traditionally identified as Maa strain 18. Genome diversity in Map appears to be mostly restricted to large sequence polymorphisms that are often associated with mobile genetic elements. Keywords: Comparative genomic hybridization Each isolate was competitively hybridized against Map K10 with a minimum of 2 dye flip hybridizations per isolate.
Project description:We exposed Candida parapsilosis clinical isolate #12108 to YPD plate supplemented with 8µg/ml of tunicamycin. We randomly selected 18 adaptors. We did sequencing of these adaptors.
Project description:We exposed Candida parapsilosis clinical isolate #12108 to YPD plate supplemented with 40ng/ml of aureobasidin A. We randomly selected 18 adaptors. We did sequencing of these adaptors.
Project description:A comparative genomic approach was used to identify large sequence polymorphisms among Mycobacterium avium isolates obtained from a variety of host species. DNA microarrays were used as a platform for comparing mycobacteria field isolates with the sequenced bovine isolate Mycobacterium avium subsp. paratuberculosis (Map) K10. ORFs were classified as present or divergent based on the relative fluorescent intensities of the experimental samples compared to Map K10 DNA. Map isolates cultured from cattle, bison, sheep, goat, avian, and human sources were hybridized to the Map microarray. Three large deletions were observed in the genomes of four Map isolates obtained from sheep and four clusters of ORFs homologous to sequences in the Mycobacterium avium subsp. avium (Maa) 104 genome were identified as being present in these isolates. One of these clusters encodes glycopeptidolipid biosynthesis enzymes. One of the Map sheep isolates had a genome profile similar to a group of Mycobacterium avium subsp. silvaticum (Mas) isolates which included four independent laboratory stocks of the organism traditionally identified as Maa strain 18. Genome diversity in Map appears to be mostly restricted to large sequence polymorphisms that are often associated with mobile genetic elements. Keywords: Comparative genomic hybridization
2007-04-27 | GSE7622 | GEO
Project description:Isoniazid susceptible clinical isolate of Mycobacterium tuberculosis