Project description:This study researched the combined effects of hexavalent chromium (Cr(VI)) concentration and antibiotics on the ARGs of Bacillus cereus SH-1. As the Cr(VI) concentration increased, it triggered Reactive Oxygen Species (ROS) oxidative stress in SH-1, increased antioxidant enzyme activity, enhanced plasmid conjugative transfer and reduced the removal efficiency of Cr(VI) by SH-1. Meanwhile, antibiotic resistance varied with TET (Tetracycline) and AMC (Amoxicillin) MICs (minimum inhibitory concentration) rising and AZM (Azithromycin) and CL (Chloramphenicol) MICs decreasing with Cr(VI) induction. Overexpression of eight genes of the HAE-1 family efflux pumps was detected through metagenomics and proteomics. Co-contamination of Cr(VI) and antibiotics led to the emergence and spread of antibiotics resistant bacteria (ARBs).
Project description:The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams.
Project description:The incidence of antibiotics and transcriptional regulation of ARGs in isolated bacteria from wastewater needs to be explored. By HPLC, in samples of untreated wastewater, ampicillin (49.74 ± 5.70 µg/mL), chloramphenicol (0.60 ± 0.03 µg/mL), tylosin (72.95 ± 2.03 µg/mL), and oxytetracycline (0.22 ± 0.01 µg/mL) was determined. Through metagenomic analysis identified 58 bacterial species belonging to 9 phyla and at least 14 species have shown resistance to a variety of antibiotics. Twenty-two bacterial isolates were proved to be resistant to fifteen antibiotics of new generation and used in medical research to combat infectious diseases. Fourteen strains were shown to harbor plasmids in size ranges of 2-5 Kb, 6-10 Kb and plasmids with size greater than 10 Kb. By quantitative PCR it was possible to identify genes sul, qnr, cat1, aadA1, and sat-1 gene were shown to be present in gDNA samples from treated and untreated samples of wastewater and by relative expression analysis, differential expression of cat1, ermB, act, and tetA genes was demonstrated in strains that showed identity with Escherichia coli, Bacteroides fragilis, and Salmonella thyphi, and that were stressed with different concentrations of antibiotics. The presence of ARGs in untreated water samples, as well as in bacterial isolates, was indicative that in these habitats there are microorganisms that can resist β-lactams, aminoglycosides, tetracyclines, sulfonamides, and quinolones.
Project description:There is little information available on antibiotic resistance (ABR) within shrimp aquaculture environments. The aim of this study was to investigate the presence of antibiotic resistance genes (ARGs) in shrimp farming operations in Atacames, Ecuador. Water samples (n = 162) and shrimp samples (n = 54) were collected from three shrimp farming operations. Samples were cultured and a subset of isolates that grew in the presence of ceftriaxone, a third-generation cephalosporin, were analyzed using whole-genome sequencing (WGS). Among the sequenced isolates (n = 44), 73% of the isolates contained at least one ARG and the average number of ARGs per isolate was two, with a median of 3.5 ARGs. Antibiotic resistance genes that confer resistance to the β-lactam class of antibiotics were observed in 65% of the sequenced isolates from water (20/31) and 54% of the isolates from shrimp (7/13). We identified 61 different ARGs across the 44 sequenced isolates, which conferred resistance to nine antibiotic classes. Over half of all sequenced isolates (59%, n = 26) carried ARGs that confer resistance to more than one class of antibiotics. ARGs for certain antibiotic classes were more common, including beta-lactams (26 ARGs); aminoglycosides (11 ARGs); chloramphenicol (three ARGs); and trimethoprim (four ARGs). Sequenced isolates consisted of a diverse array of bacterial orders and species, including Escherichia coli (48%), Klebsiella pneumoniae (7%), Aeromonadales (7%), Pseudomonadales (16%), Enterobacter cloacae (2%), and Citrobacter freundii (2%). Many ARGs were shared across diverse species, underscoring the risk of horizontal gene transfer in these environments. This study indicated the widespread presence of extended-spectrum β-lactamase (ESBL) genes in shrimp aquaculture, including blaCTX-M, blaSHV, and blaTEM genes. Increased antibiotic resistance surveillance of shrimp farms and identification of aquaculture operation-level risk factors, such as antibiotic use, will likely be important for mitigating the spread of ARGs of clinical significance.
Project description:The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the blaCTX,qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.
Project description:Because antibiotics have been widely used to prevent severe losses due to infectious fishery diseases, the liberal application and overuse of antibiotics has led to the spread and evolution of bacterial resistance, food safety hazards, and environmental issues. The use of some antibiotics, including florfenicol and enrofloxacin, is allowed in aquaculture in China. Accordingly, to better address the concerns and questions associated with the impact of administered enrofloxacin and florfenicol to grass carp, here we investigated the immune response, bacterial diversity, and transcriptome of the intestine of C. idella treated with these oral antibiotics. The aim of this study was to provide an in-depth evaluation of the antibiotic-induced patterns and dynamics of the microbiota grass carp and the potential mechanism involved.
Project description:Acinetobacter non-baumannii species are becoming common etiologic agents of nosocomial infections. Furthermore, clinical isolates belonging to this group of bacteria are usually resistant to one or more antibiotics. The current information about antibiotic resistance genes in the different A. non-baumannii species has not yet been studied as a whole. Therefore, we did a comparative study of the resistomes of A. non-baumannii pathogens based on information available in published articles and genome sequences. We searched the available literature and sequences deposited in GenBank to identify the resistance gene content of A. calcoaceticus, A. lwoffii, A. junii, A. soli, A. ursingii, A. bereziniae, A. nosocomialis, A. portensis, A. guerrae, A. baylyi, A. calcoaceticus, A. disperses, A. johnsonii, A. junii, A. lwoffii, A. nosocomialis, A. oleivorans, A. oryzae, A. pittii, A. radioresistens, and A. venetianus. The most common genes were those coding for different β-lactamases, including the carbapenemase genes bla