Project description:This study researched the combined effects of hexavalent chromium (Cr(VI)) concentration and antibiotics on the ARGs of Bacillus cereus SH-1. As the Cr(VI) concentration increased, it triggered Reactive Oxygen Species (ROS) oxidative stress in SH-1, increased antioxidant enzyme activity, enhanced plasmid conjugative transfer and reduced the removal efficiency of Cr(VI) by SH-1. Meanwhile, antibiotic resistance varied with TET (Tetracycline) and AMC (Amoxicillin) MICs (minimum inhibitory concentration) rising and AZM (Azithromycin) and CL (Chloramphenicol) MICs decreasing with Cr(VI) induction. Overexpression of eight genes of the HAE-1 family efflux pumps was detected through metagenomics and proteomics. Co-contamination of Cr(VI) and antibiotics led to the emergence and spread of antibiotics resistant bacteria (ARBs).
Project description:Because antibiotics have been widely used to prevent severe losses due to infectious fishery diseases, the liberal application and overuse of antibiotics has led to the spread and evolution of bacterial resistance, food safety hazards, and environmental issues. The use of some antibiotics, including florfenicol and enrofloxacin, is allowed in aquaculture in China. Accordingly, to better address the concerns and questions associated with the impact of administered enrofloxacin and florfenicol to grass carp, here we investigated the immune response, bacterial diversity, and transcriptome of the intestine of C. idella treated with these oral antibiotics. The aim of this study was to provide an in-depth evaluation of the antibiotic-induced patterns and dynamics of the microbiota grass carp and the potential mechanism involved.
Project description:Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Project description:Acinetobacter non-baumannii species are becoming common etiologic agents of nosocomial infections. Furthermore, clinical isolates belonging to this group of bacteria are usually resistant to one or more antibiotics. The current information about antibiotic resistance genes in the different A. non-baumannii species has not yet been studied as a whole. Therefore, we did a comparative study of the resistomes of A. non-baumannii pathogens based on information available in published articles and genome sequences. We searched the available literature and sequences deposited in GenBank to identify the resistance gene content of A. calcoaceticus, A. lwoffii, A. junii, A. soli, A. ursingii, A. bereziniae, A. nosocomialis, A. portensis, A. guerrae, A. baylyi, A. calcoaceticus, A. disperses, A. johnsonii, A. junii, A. lwoffii, A. nosocomialis, A. oleivorans, A. oryzae, A. pittii, A. radioresistens, and A. venetianus. The most common genes were those coding for different β-lactamases, including the carbapenemase genes bla
Project description:The aim of this study was to investigate selective pressure of antibiotics on antibiotic resistance genes (ARGs) and bacterial communities in manure-polluted aquatic environment. Three treatment groups were set up in freshwater-sediment microcosms: tetracyclines group, sulfonamides group and fluoroquinolones group. Sediment and water samples were collected on day 14 after treatment. Antibiotic concentrations, ARGs abundances and bacterial community composition were analyzed. Antibiotic concentrations were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. ARGs abundances were quantified by real time quantitative PCR. Bacterial community composition was analyzed based on amplicon sequencing. Of the three classes of antibiotics analyzed in the treatment groups, accumulation amounts were tetracyclines> fluoroquinolone> sulfonamides in the sediment samples, while they were sulfonamides> fluoroquinolone> tetracyclines in the water samples. In the treatment groups, the relative abundances of some tet resistance genes [tet(W) and tet(X)] and plasmid-mediated quinolone resistance (PMQR) genes [oqx(B) and aac(6')-Ib] in sediment samples were significantly higher than those in the paired water samples. Tetracyclines significantly selected the bacterial classes including Gammaproteobacteria, Clostridia, and the genera including Salmonella, Escherichia/Shigella, Clostridium, Stenotrophomonas in sediment samples. The significant selection on bacterial communities posed by sulfonamides and fluoroquinolones was also observed. The results indicated that sediment may supply an ideal setting for maintenance and persistence of tet resistance genes [tet(W) and tet(X)] and PMQR genes [oqx(B) and aac(6')-Ib] under antibiotic pollution. The results also highlighted that antibiotics significantly selected specific bacterial communities including the taxa associated with opportunistic pathogens.
Project description:Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information is available on the diversity and abundance of various ARGs in small to large scale pig farms and biogas digestate slurry in Germany, followed by their consequent removal using microfiltration (MF)-nanofiltration (NF) process. Here, we report the identification and quantification of 189 ARGs in raw manure and digestate samples, out of which 66 ARGs were shared among manures and 53 ARGs were shared among both manure and digestate samples. The highest reported total ARG copy numbers in a single manure sampling site was 1.15 × 108 copies/100 µL. In addition, we found the absolute concentrations of 37 ARGs were above 105 copies/100 μL. Filtration results showed that the highly concentrated ARGs (except aminoglycoside resistance ARGs) in feed presented high log retention value (LRV) from 3 to as high as 5 after the MF-NF process. Additionally, LRV below 2 was noticed where the initial absolute ARG concentrations were ≤103 copies/100 μL. Therefore, ARG removal was found to be directly proportional to its initial concentration in the raw manure and in digestate samples. Consequently, some ARGs (tetH, strB) can still be found within the permeate of NF with up to 104 copies/100 μL.
Project description:Bactericidal antibiotics are powerful drugs because they not only inhibit essential bacterial functions, but convert them into toxic processes. Many bacteria are remarkably tolerant against antibiotics, due to inducible damage repair responses. How these responses promote whole population tolerance in important human pathogens is poorly understood. The two-component system VxrAB of the diarrheal pathogen Vibrio cholerae, a model system for tolerance against cell wall damaging (e.g., beta-lactam) antibiotics, is required for high-level beta-lactam tolerance. Here, we report the mechanism of VxrAB-mediated survival. We find that -lactam antibiotics inappropriately induce the Fur-regulated iron starvation response, causing an increase in intracellular free iron and colateral oxidative damage. VxrAB reduces antibiotic-induced toxic influx of Fe by downregulating iron importers and induces cell wall synthesis functions to counteract cell wall damage. Our results highlight the complex responses elicited by antibiotics and suggest that the ability to counteract diverse stresses promotes high-level antibiotic tolerance.
Project description:Manure, which contains large amounts of antibiotics and antibiotic resistance genes (ARGs), is widely used in agricultural soils and may lead to the evolution and dispersal of ARGs in the soil environment. In the present study, soils that received manure or chemical fertilizers for 15 years were sampled on the North China Plain (NCP), which is one of the primary areas of intensive agriculture in China. High-throughput quantitative PCR and sequencing technologies were employed to assess the effects of long-term manure or chemical fertilizer application on the distribution of ARGs and microbial communities. A total of 114 unique ARGs were successfully amplified from all soil samples. Manure application markedly increased the relative abundance and detectable numbers of ARGs, with up to 0.23 copies/16S rRNA gene and 81 unique ARGs. The increased abundance of ARGs in manure-fertilized soil was mainly due to the manure increasing the abundance of indigenous soil ARGs. In contrast, chemical fertilizers only moderately affected the diversity of ARGs and had no significant effect on the relative abundance of the total ARGs. In addition, manure application increased the abundance of mobile genetic elements (MGEs), which were significantly and positively correlated with most types of ARGs, indicating that horizontal gene transfer via MGEs may play an important role in the spread of ARGs. Furthermore, the application of manure and chemical fertilizers significantly affected microbial community structure, and variation partitioning analysis showed that microbial community shifts represented the major driver shaping the antibiotic resistome. Taken together, our results provide insight into the long-term effects of manure and chemical fertilization on the dissemination of ARGs in intensive agricultural ecosystems.