Project description:To carry out population genetics analyses of the Arctic gregion we carried out Illumina Bead-Array-based enotyping on 18 samples from Greenland.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the low Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:C5aR1, a receptor for the complement activation proinflammatory fragment, C5a, is primarily expressed on cells of the myeloid lineage, and to a lesser extent on endothelial cells and neurons in brain. Previous work demonstrated C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in Alzheimer Disease (AD) mouse models. In the Arctic AD mouse model, genetic deletion of C5aR1 prevented behavior deficits at 10 months. However, the molecular mechanisms of this protection has not been definitively demonstrated. To understand the role of microglial C5aR1 in the Arctic AD mouse model, we have taken advantage of the CX3CR1GFP and CCR2RFP reporter mice to distinguish microglia as GFP-positive and infiltrating monocytes as GFP and RFP positive, for subsequent transcriptome analysis on specifically sorted myeloid populations from wild type and AD mouse models. Immunohistochemical analysis of mice aged to 2, 5, 7 and 10 months showed no change in amyloid beta (Ab) deposition in the Arctic C5aR1 knockout (KO) mice relative to that seen in the Arctic mice. Of importance, no CCR2+ monocytes/macrophages were found near the plaques in the Arctic brain with or without C5aR1. RNA-seq analysis on microglia from these mice identified inflammation related genes as differentially expressed, with increased expression in the Arctic mice relative to wildtype and decreased expression in the Arctic/C5aR1KO relative to Arctic. In addition, phagosomal-lysosomal proteins and protein degradation pathways that were increased in the Arctic mice were further increased in the Arctic/C5aR1KO mice. These data are consistent with a microglial polarization state with restricted induction of inflammatory genes and enhancement of clearance pathways.
Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids, but can be bred and grown at inland freshwater tank farms year round. It is therefore of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change, as well as to enable production in more southern regions. We conducted an acute temperature trial to identify temperature tolerant and intolerant Arctic charr individuals. Specifically, approximately 200 fish were transferred to an experimental tank (diameter: 1.86 m, depth 50 cm) and left to acclimate for 48 h at ambient temperature. After acclimation, 10 fish were removed to act as a control group, then water that had been diverted through a heat exchanger was added to the flow-through system to increase the water temperature in the tank by 6°C/h until it reached 22°C, then 0.5°C every 30 min until the water reached 25°C, the observed lethal temperature for these fish. When the water temperature reached 25°C, the temperature was held constant and the fish were closely monitored for signs of stress. The first and last 10 individuals to show loss of balance were quickly removed from the tank for sampling, thus representing the 5% least and most temperature tolerant fish, respectively. A reference design microarray study was then performed with the cGRASP 32K microarray using six samples from each group (Intolerant, Tolerant, Control) to identify genes differentially expressed between groups. The results of this study will feed into an ongoing Arctic charr marker-assisted selection based broodstock development program, and may contribute to population-based conservation initiatives for salmonids in general.