Project description:The rise of antibiotic resistance and decline of antibiotic discovery urgently calls for novel mechanistic understanding of pharmacological and evolutionary interactions between antibiotics and multidrug resistant bacteria to revitalize existing antibiotics. The evolutionary cross-resistance to antibiotics has received intensive attention previously. Nevertheless, whether and how bacteria develop negative responses, under the selective pressure of antibiotics by inverting the evolutionary trajectory remains unclear. Here we found an instance of collateral sensitivity, in which clinical vancomycin-resistant Enterococcus faecium (VREfm) pathogens exhibit dramatic and specific susceptibility to pleuromutilin antibiotics, decreased minimal inhibitory concentrations (MICs) from 128 µg/mL to 0.03 µg/mL. The unique trade-off between vancomycin and pleuromutilins is mediated by the epistasis between the van gene cluster and msrC encoding an ABC-F protein protecting bacterial ribosomes. We validated the efficacy of pleuromutilins in vivo through reducing colonization and promoting microbiota restoration. Our findings provide an alternative approach to inverting the selective advantage and reversing the route of vancomycin resistance evolution, and to treat VREfm associated infections.
Project description:This study aims to determine the global gene expression in vancomycin resistant Enterococcus faecium (VRE) in response to a novel essential oil-vancomycin combination, and the individual components (vancomycin, carvacrol and cuminaldehyde) to help determine the mechanism of action of this antimicrobial formulation. This formulation increases the susceptibility of VRE to vancomycin and the array provides data on the synergistic mechanism of action. Five conditions (1. Control; 2. Carvacrol, 1.98 mM; 3. Cuminaldehyde, 4.20 mM; 4. Vancomycin, 0.031 mg/l; 5. Combination, 1.98 mM Carvacrol, 4.2 mM Cuminaldehyde, 0.031 mg/l vancomycin) all with 1% DMSO were tested in triplicate with a 60 minute exposure time before extraction.
Project description:Regulatory RNAs (sRNAs) are now considered as major players in many physiological and adaptive responses in pathogenic bacteria. sRNAs have been extensively studied in Gram-negative bacteria, but less information is available in Gram-positive pathogens. There is a spread of multidrug-resistant (MDR) opportunistic organisms, grouped as “ESKAPE” pathogens, which comprise enterococci, a leading cause of hospital-acquired infections and outbreaks with emergence of MDR isolates, especially vancomycin-resistant Enterococcus faecium (VREF). Note that no information about sRNA expression is known in this major opportunistic pathogen. By transcriptomic and genomic analyses using E. faecium Aus0004 reference strain, 249 transcribed IGRs, including sRNA candidates, were detected and, using a series of cut-offs, this set was lowered down to 54 sRNAs while 7 that were predicted based on comparative sequence analysis. RNA-seq was performed with and without subinhibitory concentrations (SIC) of daptomycin, a cyclic lipopeptide antibiotic used for VREF infections. Under daptomycin SIC exposure, 260 genes (9.1% of the genome) had a significant alteration of expression including 80 upregulated genes and 180 downregulated genes. Among the repressed genes, a large proportion (55%) coded for proteins involved in carbohydrate and transport metabolism. Also, we focused on the 9 sRNAs exhibiting the highest expression, and all of them were confirmed as expressed along bacterial growth by Northern blots and qPCR. Out of these 9 sRNAs, four had significantly lower or higher expression in the presence of daptomycin SIC, and therefore responded to antibiotic exposure. Finally, we also tested the expression of these 9 sRNAs in a collection of isogenic Aus0004 mutants with increasing levels of daptomycin resistance, and we observed by qPCR that some sRNAs had a significantly modified expression in daptomycin resistance mutants. It highlights the significant implication of some of the E. faecium sRNAs in the early steps of the development of daptomycin resistance. This is the first experimental genome-wide sRNA identification in Gram-positive E. faecium, a leading cause of hospital acquired infections.
Project description:A set of small RNAs was identified in Vancomycin-resistant Enterococcus faecium, a leading cause of MDR infections. We described here the function of srn_2050, acting as a T-box riboswitch to regulate expression of downstream genes encoding the HisRS and AspRS aminoacyl-tRNA synthetases. Comparative RNAseq between Aus0004 and isogenic srn_2050 mutant identified the genes whose expression is impacted by the RNA. srn_2050 structure in its ‘off state’ was deciphered by in-line probing, containing T-box consensus sequences, a pseudoknot, a specifier loop and a terminator. Transcription binding assays between the riboswitch and either tRNAAsp or tRNAHis indicate that each deacylated tRNA interacts with the T-box. Their anticodons bind to a GACAC sequence within the specifier loop (GAC and CAC are Asp and His codons, respectively), whereas tRNATyr (UA/C-U) does not. A pioneering evaluation of E. faecium amino acid auxotrophy, with emphasis on E. faecium strain Aus0004, revealed auxotrophy for Histidine but not for Aspartic acid. Based on comparative growths and RNAseq between Aus004 and Aus004-srn2050, the riboswitch is shown essential for growth under aspartate starvation. This is the first example of a functional riboswitch in E. faecium with two overlapping codons allowing a dual tRNA-dependent regulation at transcriptional level.
Project description:Preliminary analysis on extracts (pellets and supernatant) of vancomycin-resistant Enterococcus faecium strains cultured in BHI media. Untargeted LC-MS/MS acquisition performed in positive ion mode.
Project description:Enterococcus faecium has emerged as a major opportunistic pathogen for two decades, with the spread of hospital-adapted multidrug-resistant clones. Members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of the study was to evaluate globally the impact of subinhibitory concentrations (SICs) of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium. Transcriptomic analysis was performed by RNA-seq (HiSeq 2500, Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/L, i.e. MIC 1/8). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced whereas 286 were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Amongst upregulated genes, EFAU004_02294 (fold change of 14.3) encoded a protein (EfmQnr) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive FQ resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292 coding for the collagen adhesin Acm was also induced by SIC of ciprofloxacin (fold change of 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both Efmqnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving a fluoroquinolone therapy.
Project description:The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including mobile genetic elements (MGE) encoding antimicrobial resistance. Here, we define the mobilome in representative successful hospital associated genetic lineages, E. faecium ST17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) using DNA microarray analyses. The hybridization patterns of 272 targets representing plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29), and CRISPR-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. Although plasmids belonging to the RCR-, Rep_3-, RepA_N- and Inc18-families were well represented with no significant differences in prevalence, the presence of specific replicon classes differed highly between the species; E. faecium was dominated by rep17/pRUM, rep2/pRE25, rep14/EFNP1 and rep20/pLG1 and E. faecalis by rep9/pCF10, rep2/pRE25 and rep7. Tn916-elements conferring tetracycline resistance (tetM) were found in all E. faecalis strains, but only in two E. faecium strains. A significant higher prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982-, and IS4-transposases were detected in E. faecium, and of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 which have only been reported in few enterococcal isolates, were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. Gene targets defined as the enterococcal mobilome, including plasmids, IS elements and transposons, resistance determinants, prophage sequences and CRISPR-Cas systems were highly prevalent, underlining their potential importance in the evolution of hospital associated STs. An association between axe-txe to the RepA_N-family and ω-ε-ζ to the Inc18-family, implicates the contribution of TA-systems in stable plasmid maintenance carrying virulence and resistance determinants in enterococci. The concurrent presence of defined MGE and their associated resistance markers was generally confirmed and illustrates the importance of horizontal gene transfer in the development of multidrug resistant enterococci.
Project description:E. faecium is inherantly resistant to cephalosporins. Resistance is lost in Class A penicillin binding protein PbfF PonA mutants, but is reversible by pencillin exposure. E. faecium Affymetrix GeneChips were used to compare E. faecium expression properties of pbfF ponA mutant cells in the absence or presence of penicillin exposure. Significant differences were observed between the expression properties of mock and penicillin treated E. faecium CV571 (pbfF ponA double mutant) cells.
Project description:In our study, we employed activity-based protein profiling (ABPP), a technique that uses specialized inhibitors to identify active serine hydrolases in different strains of E. faecium (clade A1 and A2) and E. lactis under various growth conditions. Serine hydrolases, a large and diverse family of enzymes that include established drug targets like penicillin-binding proteins, have other less-studied subfamilies. In addition to fluorescent, gel-based profiling, we used a biotin-tagged fluorophosphonate probe for the enrichment and identification of serine hydrolase enzymes via streptavidin enrichment and liquid chromatography/mass spectrometry analysis. This led to the discovery of 11 largely unexplored potential targets (including α,β-hydrolases, SGNH-hydrolases, phospholipases, amidases, and peptidases) that could be exploited for drug developmentagainst the vancomycin-resistant E. faecium strain E745.