Project description:Background: Understanding the genetic elements that contribute to key aspects of coffee biology will impact future agronomical improvements for this economically important tree. The past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The project PUCE CAFE, set up by the scientific consortium NESTLE/IRD/CIRAD has developed of long oligonucleotide coffee array using public coffee EST sequences mainly obtained from different stages during fruit development and leaves in Coffea canephora (Robusta). We have performed a validation experiment in order to check the array usability and the reproducibility of hybridizations. Conclusion: We have generated the first 15K Coffee array during this three years project PUCE CAFE, granted by The French National Research Agency (ANR, Programme Génoplante) . This new tool was dedicated to large scale transcriptomic analysis during grain development of Coffea canephora grown in different countries . Furthermore, other analysis have been also initiated by the different partners like analysis of polyploidy or drought resistance. In any case, at the end of the project, the generated arrays will be available to the international scientific community.
Project description:Background: Understanding the genetic elements that contribute to key aspects of coffee biology will impact future agronomical improvements for this economically important tree. The past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The project PUCE CAFE, set up by the scientific consortium NESTLE/IRD/CIRAD has developed of long oligonucleotide coffee array using public coffee EST sequences mainly obtained from different stages during fruit development and leaves in Coffea canephora (Robusta). We have performed a validation experiment in order to check the array usability and the reproducibility of hybridizations. Conclusion: We have generated the first 15K Coffee array during this three years project PUCE CAFE, granted by The French National Research Agency (ANR, Programme Génoplante) . This new tool was dedicated to large scale transcriptomic analysis during grain development of Coffea canephora grown in different countries . Furthermore, other analysis have been also initiated by the different partners like analysis of polyploidy or drought resistance. In any case, at the end of the project, the generated arrays will be available to the international scientific community. three biological replicates were made for each tissue analyzed (i.e. leaves, flowers and mature beans). The following comparisons were made: Bean-Flower, Leaf-Flower and Leaf-Bean. In all, we performed microarray analyses on 18 slides [3 (replicates) x 2 (dyes) x 3 (organs)]
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360 Keywords: ordered
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360
Project description:Coffee is one of the most important commodities cultivated worldwide and has great economic impact in producing countries. Although 130 different species belonging to the coffea gender have been described, only two of them are commercially exploited: Coffea arabica and Coffea canephora. C. arabica is responsible for 61% of the world production (Van der Vossen et al., 2015). However, due to the narrow genetic back ground, classical genetic breeding is time consuming and takes around 30 years (Santana-Buzzy et al., 2007; Hendre et al., 2014). Several genetic engineering and biotechnological tools have been successfully applied in coffee breeding. Somatic embryogenesis (SE) is a process in which new viable embryos are produced from somatic tissues. It is one of the most promising production processes (Santana-Buzzy et al, 2007; Marsoni et al., 2008). A better understanding of the molecular basis related to somatic embryogenesis will give insight into the process of embryo formation and totipotency and will allow the development of new in vitro culture strategies for the propagation and genetic manipulation of elite cultivars (Marsoni et al., 2008). High throughput proteomics in coffee is limited so far to 2D gel based proteomics techniques. Although really useful and the most common technique for plants, 2DE is limited in throughput and a gel free technique allow to go a step further (Carpentier & America, 2014; Vanhove et al., 2015). To improve the knowledge about somatic embryogenesis, we present the first high throughput proteome profile (1051 confident protein identifications) of coffee embryogenic cell suspensions developed from leaves of Coffea arabica cultivar Catuaí.
Project description:SRNAs from field collected Coffea canephora leaves were profiled by Illumina sequencing and 63 unique microRNA genes belonging to 34 families were found.
Project description:The intermediate seed category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage, for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone content and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis and respiration, and the upregulation of genes coding for late embryogenesis abundant (LEA) proteins, heat shock proteins (HSP) and antioxidant enzymes. Analysis of heat-stable proteome in the mature coffee seed confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggests a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Project description:In contrast to the desiccation tolerant (DT) ‘orthodox’ seeds, the so-called ‘intermediate’ seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds but show a considerable variability for the seed DT level, which may help to decipher the molecular basis of seed DT in plants. We thus led a comparative transcriptome analysis of developing seeds in three coffee species with contrasting seed DT levels. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were upregulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, an upregulation of numerous players of the metabolism, transport and perception of auxin was observed in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT levels are better prepared to cease respiration and avoid oxidative stresses.
Project description:Deep sequencing of mRNA from Chinese tree shrew; Chinese tree shrew (Tupaia belangeri chinensis) is placed in Order Scandentia and embraces many unique features for a good experimental animal model. Currently, there are many attempts to employ tree shrew to establish model for a variety of human disorders such as social stress, myopia, HCV and HBV infection, and hepatocellular carcinoma .We present here a publicly available annotated genome sequence for Chinese tree shrew. Phylogenomic analysis of tree shrew and other mammalians highly supported its close affinity to primates. Characterization of key factors and signaling pathways of the nervous and immune systems in tree shrews showed that this animal had common and unique features, and had essential genetic basis for being a promising model for biomedical researches. Analysis of ploy(A)+ RNA of different specimens:kidney, pancreas, heart, liver, brain, testis and ovary form Chinese tree shrew
Project description:Background: Polyploidy has long been recognized as an important mechanism in eukaryotes evolution. Recent studies have documented dynamic changes in plant polyploid gene expression, which reflects genomic and functional plasticity of duplicate genes and genomes in plants. Genomewide approaches in a variety of allopolyploids, mostly synthetics, reveal a trend of non-additive gene expression. The aim of the study was to document expression divergence between a relatively recently formed natural allopolyploid (Coffea arabica) and its ancestral parents (Coffea canephora and Coffea eugenioides) and to verify if the divergence was ‘environment-dependent’.Results: Employing a microarray platform designed against 15,522 unigenes, we assayed gene expression levels in allopolyploid and its two parental diploids. For each gene, we determined expression variation levels between the three species grown under two sets of temperature conditions (26-22°C/30-26°C). More than 35% of genes were differentially expressed in each comparison at both temperatures, except for ‘allopolyploid versus Canephora’ at the ‘hottest’ temperature where an unexpected low gene expression divergence (<9%) were observed. Genes were binned in categories: ‘no change’, ‘additivity’, ‘transgressive’ and ‘dominance’ (‘Canephora-like’ and ‘Eugenioides-like’). The totally new phenomenon revealed by our study was a drastic modification of proportions between the allopolyploid and its parents when environmental conditions were modified. At the ‘hottest’ temperature, we found a virtual disappearance of gene categories classed as ‘transgressive’, ‘Eugenioides-like dominance’ or ‘additivity’ and a major increase in genes classed in the ‘Canephora-like dominance’ category. At this set of growing conditions, we therefore found very high bias that suggested a phenomenon of ‘dominance’ of C. canephora transcription profile. The Canephora genome parental expression state seems exhibited in strong preference to the Eugenioides genome parental state. Conclusion: Our data constitute evidence for a transcription profile divergence between allopolyploid and its parental species, massively affected by environmental conditions. The parental origin of the transcription profiles was not consistently biased towards one parental species, but appeared to be affected by environmental conditions. This phenomenon indicates the plasticity of allopolyploids and might ultimately explain better adaptation to environmental conditions.