Project description:The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription. Here we analysed the transcription profiles of single and double mutants and wild-type cells by whole-genome microarray analysis. Our results indicate that genome-wide transcriptional misregulation in htz1∆ can be partially or totally suppressed if SWR1 is not formed (swr1∆), if it forms but cannot bind to chromatin (swc2∆), or if it binds to chromatin but has no histone replacement activity (swc5∆). These results suggest that in htz1∆ the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. Three biological independent replicates were use for each strain
Project description:The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription. Here we analysed the transcription profiles of single and double mutants and wild-type cells by whole-genome microarray analysis. Our results indicate that genome-wide transcriptional misregulation in htz1∆ can be partially or totally suppressed if SWR1 is not formed (swr1∆), if it forms but cannot bind to chromatin (swc2∆), or if it binds to chromatin but has no histone replacement activity (swc5∆). These results suggest that in htz1∆ the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter.
Project description:The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. While the multi-subunit SWR1 chromatin remodeling complex is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of di-nucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA adjoining core particles, allowing discrimination of gene promoters over gene bodies. We traced the critical DNA binding component of SWR1 to the conserved Swc2/YL1 subunit, whose activity is required for both SWR1 binding and H2A.Z incorporation in vivo. Histone acetylation by NuA4 enhances SWR1 binding, but the interaction with nucleosome-free DNA is the major determinant. ‘Hierarchical cooperation’ between high affinity DNA- and low affinity histone modification-binding factors may reconcile the large disparity in affinities for chromatin substrates, and unify classical control by DNA-binding factors with post-translational histone modifications and ATP-dependent nucleosome mobility. Swr1 TAP IF of various mutants
Project description:The SWR1 chromatin remodeling complex (SRCAP in humans) is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here we use cryo-EM to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical structure-function roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α -helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1 promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 towards the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.