Project description:We sequenced two tumor/normal pairs obtained from two paediatric medulloblastoma patients (MB14 and MB24) with at least 30x coverage on all commonly used next-generation sequencing platforms for whole genome sequencing (SOLiD 4, 5500xl SOLiD, Illumina's HiSeq2000, and Complete Genomic' technology). The normal tissue samples came from venous blood. We compared their ability to call single nucleotide variations (SNVs) in whole-genome sequencing data with high confidence. As gold standard for SNV calling, we used genotypes determined by Affymetrix SNP 6.0 Array Technology (total of 907,551 SNPs after quality filtering).
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Whole-genome sequencing on PacBio of laboratory mouse strains. See http://www.sanger.ac.uk/resources/mouse/genomes/ for more details. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Low coverage whole-genome sequencing have been performed on uterine leiomyosarcoma to uncovered novel potential driver genes and recurrently affected pathways.
Project description:We have established a certification system for antibodies to be used in chromatin immunoprecipitation assays coupled to massive parallel sequencing (ChIP-seq). This certification comprises a standardized ChIP procedure and the attribution of a numerical quality control indicator (QCi) to biological replicate experiments. The QCi computation is based on a universally applicable quality assessment that quantitates the global deviation of randomly sampled subsets of ChIP-seq dataset with the original genome-aligned sequence reads. Comparison with a QCi database for >28,000 ChIP-seq assays were used to attribute quality grades (ranging from ‘AAA’ to ‘DDD’) to a given dataset. In the present report we used the numerical QC system to assess the factors influencing the quality of ChIP-seq assays, including the nature of the target, the sequencing depth and the commercial source of the antibody. We have used this approach specifically to certify mono and polyclonal antibodies obtained from Active Motif directed against the histone modification marks H3K4me3, H3K27ac and H3K9ac for ChIP-seq. The antibodies received the grades AAA to BBA (www.ngs-qc.org). We propose to attribute such quantitative grading of all antibodies attributed with the label “ChIP-seq grade”.