Project description:The production of heather (Calluna vulgaris) in Germany is highly dependent on cultivars with mutated flower morphology, the so-called diplocalyx bud bloomers. So far, this unique flower type of C. vulgaris has not been reported in any other plant species. The flowers are characterised by an extremely extended flower attractiveness, since the flower buds remain closed throughout the complete flowering season. The flowers of C. vulgaris bud bloomers are male sterile, because the stamens are missing. Furthermore, petals are converted into sepals. Therefore the diplocalyx bud bloomer flowers consist of two whorls of sepals directly followed by the gynoecium. A broad comparison of wild type and bud bloomer’s flowers was undertaken to identify genes differentially expressed in the bud flowering phenotype and in the wild type of C. vulgaris. Transcriptome sequence reads were generated using next generation 454 sequencing of two flower type specific cDNA libraries. In total, 360,000 sequence reads were obtained, assembled to 12,200 contigs, functionally mapped, and annotated. Transcript abundances in wild type and bud bloomer’s libraries were compared and 365 differentially expressed genes detected. Among these differentially genes, CvPI was identified which is the orthologue of the Arabidopsis B gene PISTILLATA (PI) and considered as the most promising candidate gene. Quantitative PCR was performed to analyse the gene expression levels of two C. vulgaris B genes CvPI and CvAP3 in both flower types. CvAP3 which is the orthologue of the Arabidopsis B gene APETALA (AP3) turned out to be ectopically expressed in sepals of wild type and bud bloomer flowers. CvPI expression was proven to be reduced in the flowers of bud blooming cultivars. Differential expression patterns of the B-class genes CvAP3 and CvPI were identified to cause characteristics of flower morphology in C. vulgaris wild type and bud blooming flowers leading to the following hypotheses: ectopic expression of CvAP3 is a convincing explanation for the formation of a completely petaloid perianth in the wild type and the “bud flowering” phenotype. In C. vulgaris, CvPI is essential for determination of petal and stamen identity. The characteristic transition of petals into sepals potentially depends on the observed deficiency of CvPI and CvAP3 expression in bud blooming flowers. However, the complete loss of stamens in bud blooming flowers remains to be explained.
Project description:The production of heather (Calluna vulgaris) in Germany is highly dependent on cultivars with mutated flower morphology, the so-called diplocalyx bud bloomers. So far, this unique flower type of C. vulgaris has not been reported in any other plant species. The flowers are characterised by an extremely extended flower attractiveness, since the flower buds remain closed throughout the complete flowering season. The flowers of C. vulgaris bud bloomers are male sterile, because the stamens are missing. Furthermore, petals are converted into sepals. Therefore the diplocalyx bud bloomer flowers consist of two whorls of sepals directly followed by the gynoecium. A broad comparison of wild type and bud bloomer’s flowers was undertaken to identify genes differentially expressed in the bud flowering phenotype and in the wild type of C. vulgaris. Transcriptome sequence reads were generated using next generation 454 sequencing of two flower type specific cDNA libraries. In total, 360,000 sequence reads were obtained, assembled to 12,200 contigs, functionally mapped, and annotated. Transcript abundances in wild type and bud bloomer’s libraries were compared and 365 differentially expressed genes detected. Among these differentially genes, CvPI was identified which is the orthologue of the Arabidopsis B gene PISTILLATA (PI) and considered as the most promising candidate gene. Quantitative PCR was performed to analyse the gene expression levels of two C. vulgaris B genes CvPI and CvAP3 in both flower types. CvAP3 which is the orthologue of the Arabidopsis B gene APETALA (AP3) turned out to be ectopically expressed in sepals of wild type and bud bloomer flowers. CvPI expression was proven to be reduced in the flowers of bud blooming cultivars. Differential expression patterns of the B-class genes CvAP3 and CvPI were identified to cause characteristics of flower morphology in C. vulgaris wild type and bud blooming flowers leading to the following hypotheses: ectopic expression of CvAP3 is a convincing explanation for the formation of a completely petaloid perianth in the wild type and the “bud flowering” phenotype. In C. vulgaris, CvPI is essential for determination of petal and stamen identity. The characteristic transition of petals into sepals potentially depends on the observed deficiency of CvPI and CvAP3 expression in bud blooming flowers. However, the complete loss of stamens in bud blooming flowers remains to be explained. two samples were analysed, each representing a flower type
Project description:BackgroundCollectively, plants produce a huge variety of secondary metabolites (SMs) which are involved in the adaptation of plants to biotic and abiotic stresses. The most characteristic feature of SMs is their striking inter- and intraspecific chemical diversity. Cytochrome P450 monooxygenases (CYPs) often play an important role in the biosynthesis of SMs and thus in the evolution of chemical diversity. Here we studied the diversity and evolution of CYPs of two Jacobaea species which contain a characteristic group of SMs namely the pyrrolizidine alkaloids (PAs).ResultsWe retrieved CYPs from RNA-seq data of J. vulgaris and J. aquatica, resulting in 221 and 157 full-length CYP genes, respectively. The analyses of conserved motifs confirmed that Jacobaea CYP proteins share conserved motifs including the heme-binding signature, the PERF motif, the K-helix and the I-helix. KEGG annotation revealed that the CYPs assigned as being SM metabolic pathway genes were all from the CYP71 clan but no CYPs were assigned as being involved in alkaloid pathways. Phylogenetic analyses of full-length CYPs were conducted for the six largest CYP families of Jacobaea (CYP71, CYP76, CYP706, CYP82, CYP93 and CYP72) and were compared with CYPs of two other members of the Asteraceae, Helianthus annuus and Lactuca sativa, and with Arabidopsis thaliana. The phylogenetic trees showed strong lineage specific diversification of CYPs, implying that the evolution of CYPs has been very fast even within the Asteraceae family. Only in the closely related species J. vulgaris and J. aquatica, CYPs were found often in pairs, confirming a close relationship in the evolutionary history.ConclusionsThis study discovered 378 full-length CYPs in Jacobaea species, which can be used for future exploration of their functions, including possible involvement in PA biosynthesis and PA diversity.