Project description:Bacteriophages are potent therapeutics against biohazardous bacteria that are rapidly acquiring multidrug resistance. However, routine administration of bacteriophage therapy is currently impeded by a lack of safe phage production methodologies and insufficient phage characterization. We thus developed a versatile cell-free platform for host-independent production of phages targeting gram-positive and gram-negative bacteria. A few microliters of a one-pot reaction produces effective doses of phages against potentially antibiotic-resistant bacteria such as enterohemorrhagic E. coli (EAEC) and Yersinia pestis, which also possibly pose threats as biological warfare agents. We also introduce a method for transient, non-genomic phage engineering to safely confer additional functions, such as a purification tag or bioluminescence for host detection, for only one replication cycle. Using high-resolution and time-resolved mass spectrometry, we validated the expression of 40 hypothetical proteins from two different phages (T7 and CLB-P3) and identified genes in the genome of phage T7 that express exceptionally late during phage replication. Our comprehensive methodology thus allows for accelerated reverse and forward phage engineering as well as for safe and customized production of clinical-grade therapeutic bacteriophages.
Project description:The DNA content of bacteriophages from Bartonella grahamii was investigated by hybridization against cellular DNA from the same organism. Phage particles were isolated from plate grown bacteria as well as from different growth phases during culture in liquid medium.
Project description:Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector’s toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr’s pivotal role in immunity.