Project description:Here we studied Vanessa cardui, the species with the widest diet breadth among butterflies and a potential insect pest, by comparing tissue-specific transcriptomes from caterpillars that were fed six different host plants. We tested whether the similarities of gene-expression response reflect the evolutionary history of adaptation to these plants in the Vanessa and related genera, against the null hypothesis of transcriptional profiles reflecting plant phylogenetic relatedness. Science for Life Laboratory (SciLifeLab, Sweden) conducted the sequencing of RNA samples. The cDNA libraries (Illumina TruSeq RNA) were sequenced using the Illumina HiSeq 2000 platform using 100-bp paired-end sequencing. We obtained more than 9 million read-pairs from seventy one cDNA libraries sequenced and the transcriptome assembly (TA) of these sequences resulted in 213, 237 transcripts (162,189 components) with a contig N50 of 2,193 bp. Thus, we covered approximately 300x the transcriptome of caterpillars of the species V. cardui.
Project description:Butterfly wing patterns are an important model for studying the genetic basis of morphological evolution. Here we used RNA-seq expression profiling in the butterfly Vanessa cardui to characterize the transcriptional basis of wing pigmentation. This approach identified numerous candidate genes including known and suspected components of the insect melanin and ommochrome biosynthetic pathways.