Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:Diachasmimorpha longicaudata parasitoid wasps carry a symbiotic poxvirus, known as DlEPV, within the female wasp venom gland. We sequenced RNA from venom gland tissue to identify DlEPV orthologs for 3 conserved poxvirus core genes. The DlEPV ORFs identified from this transcriptome were used to design primers for downstream RT-qPCR analysis and RNAi knockdown experiments.
Project description:Background The generalist dipteran pupal parasitoid Nasonia vitripennis injects 79 venom peptides into the host before egg laying. This venom induces several important changes in the host, including developmental arrest, immunosuppression, and alterations to normal metabolism. It is hoped that diverse and potent bioactivities of N. vitripennis venom provide an opportunity for the design of novel acting drugs. However, currently very little is known about the individual functions of N. vitripennis venom peptides and less than half can be bioinformatically annotated. The paucity of annotation information complicates the design of studies that seek to better understand the potential mechanisms underlying the envenomation response. Although the RNA interference system of N. vitripennis provides an opportunity to functionally characterise venom encoding genes, with 79 candidates this represents a daunting task. For this reason we were interested in determining the expression levels of venom encoding genes in the venom gland, such that this information could be used to rank candidate venoms. To do this we carried out deep sequencing of the transcriptome of the venom gland and neighbouring ovary tissue and used RNA-seq to measure expression from the 79 venom encoding genes. The generation of a specific venom gland transcriptome dataset also provides further opportunities to investigate novel features of this highly specialised organ. Results High throughput sequencing and RNA-seq revealed that the highest expressed venom encoding gene in the venom gland was a serine protease called Nasvi2EG007167, which has previously been implicated in the apoptotic activity of N. vitripennis venom. As expected the RNA-seq confirmed that the N. vitripennis venom encoding genes are almost exclusively expressed in the venom gland relative to the neighbouring ovary tissue. Novel peptides appear to perform key roles in N. vitripennis venom function as only four of the highest 15 expressed venom encoding genes are bioinformatically annotationed. The high throughput sequencing data also provided evidence for the existence of an additional 471 novel genes in the Nasonia genome that are expressed in the venom gland and ovary. Finally, metagenomic analysis of venom gland transcripts identified viral transcripts that may play an important part in the N. vitripennis venom function. Conclusions The expression level information provided here for the 79 venom encoding genes provides an unbiased dataset that can be used by the N. vitripennis community to identify high value candidates for further functional characterisation. These candidates represent bioactive peptides that have value in drug development pipelines.
Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Entomopathogenic nematodes (EPNs) are unique parasitic nematodes due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. Although it has been widely believed that EPNs rely on their bacterial partners for killing insect hosts, compelling evidence from previous studies challenges this model. We developed an improved method of activating millions of Steinernema carpocapsae infective juveniles (IJs) in vitro to harvest excreted/secreted (ES) proteins for bioactivity tests and proteomics analysis. We found that a low dose of the ES proteins from early activated nematodes is lethal to Drosophila melanogaster adults within 2-6 hours. We analyzed the protein composition of this venom using mass spectrometry and identified 472 proteins. Many of these venom proteins share high homology with those of vertebrate-parasitic nematodes. Among many different families of proteins found in the venom, proteases and protease inhibitors are especially abundant. Some toxin-related proteins such as Shk domain-containing proteins were also detected. We further analyzed the transcriptomes of individual non-activated IJs and nematodes that were activated in vitro and in vivo, which revealed a dramatic shift in gene expression during IJ activation. By comparing the whole transcriptomes and the genes encoding venom proteins between the in vitro and in vivo activated nematodes, we confirmed that the in vitro activation is a good approximation of the in vivo process. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of ES products.
Project description:We generated ATAC-seq data for pre- and post-extraction venom gland samples and H3K4me3, H3K27ac, and CTCF ChIP-seq from post-extraction venom gland samples from the Prairie Rattlesnake to investigate patterns of chromatin accessibility, transcription factor binding, and insulation during venom production, and to identify open promoters and active enhancer regions.
Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high. Detection of gene expression variance among Frankia HfpCci3 (Cci3) cells grown in ammonium chloride for three days, five days and HfpCci3 cells grown in nitrogen fixing conditions for three days using mRNA-seq