Project description:Lysine acetylation and succinylation are post-translational modifications of proteins, and have been shown to play roles in plant response to pathogen infection. Phytoplasma infection can directly alter multiple metabolic processes in Paulownia and lead to Paulownia witches’ broom (PaWB), the major cause of Paulownia mortality worldwide. To explore the extent and function of lysine acylations during phytoplasma infection, we investigated global proteome, acetylome, and succinylome of phytoplasma-infected Paulownia tomentosa seedlings. In total, we globally yield 8963 proteins, 2893 acetylated, and 1271 succinylated proteins. Among them, 425 substrates were simultaneously acetylated and succinylated. Comparative analysis revealed that 276 proteins, 546 acetylated proteins and 5 succinylated proteins were associated with PaWB. Our results suggested that acetylation may be more important than succinylation in response to phytoplasma infection. Enzymatic assays showed that acetylation modified the activities of protochlorophyllide reductase and RuBisCO in phytoplasma-infected seedlings. On the basis of these results, a model to elucidate the molecular mechanism responses to PaWB was proposed and this research offer a resource for functional studies on the effects of acetylation on protein function.
Project description:In the 2019-2020 growing season, two corn fields located in İmamoğlu town (Adana Province, Turkey) were surveyed following the appearance of phytoplasma-like symptoms on maize plants. A total of 40 samples were collected and tested in first-round and nested PCR using universal primer pairs P1/P7 and R16F2n/R16R2, respectively. All maize-diseased plants reacted positively, whilst no PCR amplifications were obtained from asymptomatic plants. Blast sequence analysis of R16F2n/R16R2-primed amplicons from different maize isolates showed 99.2% to 100% of identity with the 16S rRNA gene of Ligustrum witches' broom phytoplasma (LiWBP). To gain additional molecular information on the 16S ribosomal RNA and 23S rRNA intergenic spacer region of LiWBP, not identified previously, the P1/P7-primed amplicons were also sequenced and analyzed. The results show that maize isolates from Turkey share 99.6% to 100% of identity among them, whereas the highest identity found (91%) was with members of groups 16SrII and 16SrXXV (peanut and tea witches' broom groups, respectively). This distant relationship between LiWBP and members of 16SrII and XXV was also confirmed by RFLP and phylogenetic analyses. This is the first finding of LiWBP on maize in nature, where it was found responsible for phyllody disease of corn plants in Turkey. The additional molecular information acquired in this study on the 16S-23S rRNA intergenic spacer region of LiWBP further corroborates its distant relationship to any other phytoplasma groups.