Project description:We cultivated the flavobacterium Zobellia galactanivorans DsijT with fresh brown macroalgae with distinct chemical compositions. Its capacity to use macroalgae as the sole carbon source via the secretion of extracellular enzymes, leading to extensive tissue damages, highlights a sharing pioneer degrader behavior. RNA-seq transcriptome analysis revealed a metabolic shift toward the utilization of brown algal polysaccharides during tissue degradation. A subset of genes was specifically induced in cells grown with intact algae compared to purified polysaccharides. It notably includes genes involved in protection against oxidative burst, type IX secretion system proteins and novel uncharacterized Polysaccharides Utilization Loci (PULs). Comparative growth experiments and genomics between Zobellia members brought out putative genetic determinants of the pioneer behavior of Z. galactanivorans, whose in vitro role could be further characterized. This work constitutes the first investigation of the metabolic mechanisms of bacteria mediating fresh macroalgae breakdown, and will help unravel the role of marine microbes in the fate of macroalgal biomass.
Project description:Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria (MHB), using largely uncharacterized mechanisms. In Zobellia galactanivorans, we discovered and characterized the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, providing a model system for carrageenan utilization by MHB. We further demonstrate that carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and several distal genes. The genetic structure of the carrageenan utilization system is well conserved in marine Bacteroidetes, but modified in other MHB phyla. The core system is completed by additional functions which can be assumed by non-orthologous genes in different species. This complex genetic structure is due to multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion.
Project description:Brown macroalgae holds an enormous potential as a future feedstock because it rapidly forms large biomasses and has high carbohydrate content (35% of its dry weight consists of alginate and mannitol). However, utilization of brown macroalgae by conventional microbial platforms (e.g., Escherichia coli and Saccharomyces cerevisiae) has been limited due to the inability of these platforms to metabolize alginate. Although recent studies engineered them to utilize alginate, their growth rates and metabolic activities are still too low for industrial applications, likely due to the unoptimized expression of multiple xenogeneic genes. Here, we isolated Vibrio sp. dhg, a novel, fast-growing bacterium that has been naturally evolved for efficient alginate assimilation (growth rate = 0.98 h-1). Especially, both the growth rate and sugar uptake rate of V. sp. dhg are substantially higher than the rates of E. coli for most biomass-derivable sugars. Based on our systematic characterization of its metabolism and gene expression architecture, we were able to develop a genetic toolbox for its engineering. By using this microorganism, we successfully demonstrated its ability to produce a broad spectrum of chemicals from alginate-mannitol mixtures with high productivities (1.1 g ethanol/L/h, 1.3 g 2,3-butanediol and acetoin/L/h, and 0.69 mg lycopene/L/h). Collectively, the V. sp. dhg strain is a powerful platform for the conversion of brown macroalgae sugars whose usage will dramatically accelerate the production of value-added biochemicals in the future.
2019-05-02 | GSE119357 | GEO
Project description:Enrichment culture established on brown macroalgae
Project description:We compare the transcriptome of gnotobiotic Ae. aegypti generated by contaminating axenic (bacteria-free) larvae with bacterial isolates found in natural mosquito breeding sites. We focused on four bacterial isolates (Lysobacter, Flavobacterium, Paenibacillus and Enterobacteriaceae) and found that different gnotobiotic treatments resulted in massive transcriptomic changes throughout the mosquito development.