Project description:Background: We employed DNA microarray technology to investigate the host response to Streptococcus pneumoniae in a mouse model of asymptomatic carriage. Over a period of six weeks, we profiled transcript abundance and complexity in the Nasal Associated Lymphoid Tissue (NALT) to identify genes whose expression differed between pneumococcal-colonized and uncolonized states. Results: Colonization with S. pneumoniae altered the expression of hundreds of genes over the course of the study, demonstrating that carriage is a dynamic process characterized by increased expression of a set of early inflammatory responses, including induction of a Type 1 Interferon response, and the production of several antimicrobial factors. Subsequent to this initial inflammatory response, we observed increases in transcripts associated with T cell development and activation, as well as wounding, basement membrane remodeling, and cell proliferation. Our analysis suggests that microbial colonization induced expression of genes encoding components critical for controlling JAK/STAT signaling, including stat1, stat2, socs3, and mapk1, as well as induction of several Type 1 Interferon-inducible genes and other antimicrobial factors at the earliest stages of colonization. Conclusions: Examining multiple time points over six weeks of colonization demonstrated that asymptomatic carriage stimulates a dynamic host response characterized by temporal waves with distinct biological programs. Our data suggest that the usual response to the presence of the pneumocccus is an initial controlled inflammatory response followed by activation of host physiological processes such as response to wounding, basement membrane remodeling, and increasing cellular numbers that ultimately allow the host to maintain an intact epithelium and eventually mount a preventive adaptive immune response. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied.
Project description:Antimicrobial exposure can potentially lead to increased antimicrobial resistance plasmid transfer. RNA sequencing data was collected from conjugal pairs of Salmonella enterica and Escherichia coli exposed or not exposed to tetracycline over a time course to determine differences in transcript numbers associated with conjugation and tetracycline exposure. The samples were sequenced on the Illumina HiSeq X10 platform with the 150-bp paired-end kit. Among the most highly up-regulated genes in the tetracycline exposed samples were also tetracycline efflux pump genes across the timepoints. In addition, some conjugal transfer-associated genes (e.g. traJ and traA) were upregulated in the tetracycline exposed samples.
Project description:Search Engine for Antimicrobial Resistance: a cloud compatible pipeline and web interface for rapidly detecting antimicrobial resistance genes directly from sequence data