Project description:The objectives of this study were to establish a microbiome profile for oral epithelial dysplasia using archival lesion swab samples to characterize the community variations and the functional potential of the microbiome using 16S rRNA gene sequencing
Project description:Tolerance to dietary antigens is critical to avoid deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens is poorly understood. Here we demonstrate that the goblet cell-derived resistin-like molecule beta (RELMb) is a critical regulator of oral tolerance. We find that RELMb is abundant in serum in both food allergic patients and mouse models of FA. Deletion of RELMβ protects mice from FA, development of food antigen specific IgE and anaphylaxis. RELMb disrupts food tolerance through modulation of the gut microbiome by suppressing gut Lactobacilli. Tolerance is maintained via local production of indole derivatives driving FA protective RORgt+ regulatory T (Treg) cells via activation of the aryl hydrocarbon receptor (AhR). RELMb antagonism in the peri-weaning period restored oral tolerance and protected genetically prone offspring from developing FA later in life. Together, our data identify RELMb as mediating both a novel gut immune-epithelial circuit regulating tolerance to food antigens, a new mode of innate control of antigen specific adaptive immunity via microbiome editing and targetable candidates in this circuit for prevention and treatment of FA.
Project description:To compare the features of nucleosome-free regions between human oral epithelial cells and zebrafish periderm, we performed ATAC-seq using immortalized human oral epithelial cells, HIOEC, with human embry palatal mesenchyme cells, HEPM, as control.
Project description:Background Alterations of the gut microbiome have been linked to multiple chronic diseases. However, the drivers of such changes remain largely unknown. The oral cavity acts as a major route of exposure to exogenous factors including pathogens, and processes therein may affect the communities in the subsequent compartments of the gastrointestinal tract. Here, we perform strain-resolved, integrated multi-omic analyses of saliva and stool samples collected from eight families with multiple cases of type 1 diabetes mellitus (T1DM). Results We identified distinct oral microbiota mostly reflecting competition between streptococcal species. More specifically, we found a decreased abundance of the commensal Streptococcus salivarius in the oral cavity of T1DM individuals, which is linked to its apparent competition with the pathobiont Streptococcus mutans. The decrease in S. salivarius in the oral cavity was also associated with its decrease in the gut as well as higher abundances in facultative anaerobes including Enterobacteria. In addition, we found evidence of gut inflammation in T1DM as reflected in the expression profiles of the Enterobacteria as well as in the human gut proteome. Finally, we were able to follow transmitted strain-variants from the oral cavity to the gut at the metagenomic, metatranscriptomic and metaproteomic levels, highlighting not only the transfer, but also the activity of the transmitted taxa along the gastrointestinal tract. Conclusions Alterations of the oral microbiome in the context of T1DM impact the microbial communities in the lower gut, in particular through the reduction of “oral-to-gut” transfer of Streptococcus salivarius. Our results indicate that the observed oral-cavity-driven gut microbiome changes may contribute towards the inflammatory processes involved in T1DM. Through the integration of multi-omic analyses, we resolve strain-variant “mouth-to-gut” transfer in a disease context.