Project description:Mammalian kidney has very limited ability to repair or regenerate after acute kidney injury (AKI). The maladaptive repair of AKI promotes the progression to chronic kidney disease (CKD). Therefore, it is extremely urgent to explore new strategies to promote the repair/regeneration of injured renal tubules after AKI. It has been shown that hypoxia induces heart regeneration in adult mice. However, it is unknown whether hypoxia can induce kidney regeneration after AKI. In this study, we used a prolyl hydroxylase domain inhibitor (PHDI), MK-8617, to mimic hypoxia condition and found that MK-8617 significantly ameliorates ischemia reperfusion injury (IRI) induced acute kidney injury. We then showed that MK-8617 dramatically facilitates renal regeneration via promoting the proliferation of injured renal proximal tubular cells (RPTCs) after IRI-induced AKI. We then performed bulk mRNA sequencing and discovered that multiple nephrogenesis- related genes were significantly upregulated with MK-8617 pretreatment. Furthermore, we showed that MK-8617 may alleviate proximal tubule injury via stabilizing HIF-1α protein specifically in renal proximal tubular cells. We also demonstrated that MK-8617 promotes the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells, and the regeneration of renal proximal tubules. In summary, we discovered that inhibition of prolyl hydroxylase improves renal proximal tubule regeneration after IRI-induced AKI via promoting the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells.
Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:We aimed to investigate the therapeutic effects and mechanisms of Yishen Jiangzhuo decoction (YSJZD) in a mouse model of cisplatin-induced acute kidney injury (AKI). The mice were divided into the NC, cisplatin, and cisplatin + YSJZD groups. A concentration-dependent effect of YSJZD on cisplatin-induced AKI was observed, and the optimal concentration for intervention was calculated. Changes in blood urea nitrogen and serum creatinine levels combined with hematoxylin & eosin and periodic acid-Schiff staining, and transmission electron microscopy observations indicated that YSJZD enhanced renal function, reduced pathological injury, and protected renal tubular epithelial cells in cisplatin-induced AKI mice. The results of the transcriptomic and enrichment analyses showed that the mechanisms of YSJZD may be associated with inflammation, oxidation, apoptosis, and the TNF signal pathway. Immunofluorescence, oxidative stress index, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and western blotting (WB) revealed that YSJZD downregulated apoptosis in the renal tissues of AKI mice, and further decreased the expression levels of p-p65, p-p38 MAPK, tumor necrosis factor -α, cleaved-caspase-3, and malondialdehyde, while increasing the levels of SIRT3, GSH, and SOD. Overall, the results showed that YSJZD could effectively abrogate cisplatin-induced AKI in mice through mechanisms primarily related to its anti-inflammatory, antioxidative, and antiapoptotic effects by inhibited the TNF signal pathway. YSJZD warrants further investigation as a clinical empirical prescription.
Project description:The Hippo/YAP pathway plays a critical role in early embryonic kidney development, but its functions in the adult kidney are less well understood. Our previous work has demonstrated that tubular YAP activation induced by double knockout of the upstream Hippo kinases Mst1 and Mst2 (Mst1/2 dKO) promotes tubular injury and renal inflammation under basal conditions. However, the importance of tubular YAP activation remains to be established in injured kidneys in which many other injurious pathways are simultaneously activated. Several secreted factors were found to be increased by YAP in tubular cells, but how the transcriptional network is altered by YAP is largely unknown. Here, we show that tubular YAP was already activated at 6 h after unilateral ureteral obstruction (UUO). Tubular YAP deficiency greatly attenuated tubular cell over-proliferation, tubular injury and renal inflammation induced by UUO or cisplatin. RNA-Seq, ChIP and luciferase assay revealed that YAP promoted the transcription of the transcription factor KLF5 whereas no interaction between YAP and KLF5 was observed. Consistently, the elevated expression of KLF5 and its target genes in Mst1/2 dKO or UUO kidneys was blocked by ablation of Yap in tubular cells. Inhibition of KLF5 prevented tubular cell over-proliferation, tubular injury and renal inflammation in Mst1/2 dKO kidneys. Therefore, our results demonstrate that tubular YAP is a key player in kidney injury. YAP and KLF5 form a transcriptional cascade, in which tubular YAP activation induced by kidney injury promotes KLF5 transcription. Activation of this cascade induces tubular cell over-proliferation, tubular injury and renal inflammation
Project description:Sepsis is a severe and dysregulated inflammatory disease that often precedes the development of acute kidney injury (AKI) with consequent worsening outcome. The main characteristics of sepsis-induced AKI include endothelial cell (EC) dysfunction, infiltration of inflammatory cells, glomerular thrombosis, and renal tubular epithelial cells (RTEC) injury. Numerous studies have demonstrated that mammalian target of rapamycin (mTOR) activation has been implicated in the initiation and progression of renal injury in course of sepsis. However, little is known, about the molecular basis of mTOR role in EC and RTEC dysfunction. Here, we evaluate whether mTOR inhibition by Rapamycin (Rp) as potential strategy to ameliorate renal function and dissected the molecular mechanisms involved. In a mouse model of lipopolysaccharide (LPS)-induced AKI , LPS injection led to a time-dependent increase of serum creatinine and significant morphological changes in renal parenchyma associated with increased collagen deposits and endothelial dysfunction. Interestingly, Rp treatment significantly decreased creatine levels and preserved renal parenchyma, counteracting Endothelial-to mesenchymal transition (EndMT) process and early fibrosis through the inhibition of ERK pathway. Next, we examined the effects of LPS-TLR4 interaction in RTECs. Through a whole-genome DNA methylation analysis in cultured RTEC, we found that LPS induced aberrant methylation, particularly in regions involved in premature aging. The most represented genes were CD39 and WFS1. LPS stimulation of RTEC led to up-regulation of SA-β Gal and cell cycle arrest markers such as p21. In accordance, in endotoxemic mice, we found a decreased expression of CD39 concurrent with Klotho down-regulation. Administration of Rp exerted anti-aging effects in endotoxemic mice, preserving CD39 and Klotho expression. In conclusion, we demonstrated that mTOR inhibition could offer novel strategies to protect endothelial and tubular compartment from accelerated aging and fibrosis thus counteracting the progression to chronic kidney disease.
Project description:Although there is significant progress in understanding the structure and function of NLRC5, a member of the NOD like receptor (NLR) family, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney keeps unknown. In this study, we found that NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury (IRI). NLRC5 deficient (NLRC5-/-) mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury (AKI). Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses which is associated with, at least in part, the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during IRI, we generated bone marrow (BM) chimeric mice. NLRC5-/- mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with NLRC5-/- BM, suggesting that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Collectively, modulation of NLRC5-mediated pathway may have important therapeutic implications for patients with AKI.
Project description:The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage. Raptor fl/fl*KspCre and Raptor fl/fl animals were sacrificed at P14 before the development of an overt functional phenotype. Kidneys were split in half and immediately snap frozen in liquid nitrogen.