Project description:In this study, we investigated the effects of organic vegetable juice supplementation on modulating the microbial community, and how its consumption ameliorates blood lipid profiles in diet-induced obese mice. Here, we analyzed the effect of organic vegetable juice on the microbial community and fatty acid synthesis via animal experiments using diet-induced obese mice and continuous colon simulation system. Organic vegetable juice supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with organic vegetable juice affected predicted lipid metabolism function genes related to lipid synthesis. Organic vegetable juice consumption did not have a significant effect on weight loss but helped reduce epididymis fat tissue and adipocytes. Additionally, blood lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the organic vegetable juice-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and Fas, were significantly decreased. Analysis of antioxidant markers, including 8-OHdG and MDA, in the vegetable juice group, indicated that blood lipid profiles were improved by the antioxidant effect. These results suggest that organic vegetable juice supplementation may modulate gut microbial community and reduce the potential role of hyperlipidemia in diet-obese mice.
Project description:Analysis of the effect of using a fruit and vegetable juice concentrate to reduce systemic inflammation in obesity. The hypothesis tested whether the presence of polyphenols in the fruit and vegetable juice concentrate could reduce the expression of systemic inflammatory genes in the blood of Obese patients with high levels of plasma CRP (≥3.0). Results provide evidence that systemic inflammatory genes/ and or pathways may be modulated by the fruit and vegetable juice concentrate.
Project description:In this study, we investigated the effects of organic vegetable juice (OVJ) supplementation on modulating the microbial community, and how its consumption ameliorated blood-lipid profiles in diet-induced obese mice. Here, we studied the alleviating effect of hyperlipidemia via animal experiments using diet-induced obese mice and analyzed the effect of OVJ on the microbial community in continuous colon simulation system. OVJ consumption did not have a significant effect on weight loss but helped reduce the weight of the epididymis fat tissue and adipocytes. Additionally, blood-lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the OVJ-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and FAS, were significantly decreased. In addition, OVJ treatment significantly reduced inflammatory cytokines and oxidative stress. OVJ supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia, which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with OVJ affected predicted lipid-metabolism-function genes related to lipid synthesis. These results suggest that OVJ supplementation may modulate gut microbial community and reduce the potential symptom of hyperlipidemia in diet-obese mice.
Project description:MS/MS data of the study that investigated the impact of moderate electric field (MEF) and shear stress (SS) on the chemical profile of a blended fruit and vegetable juice using untargeted metabolomics.
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Metabolomics holds the promise to measure and quantify small molecules comprehensively in biological systems, and LC-MS (liquid chromatography coupled mass spectrometry) has become the leading technology in the field. Significant challenges still exist in the computational processing of data from LC-MS metabolomic experiments into metabolite features, including provenance and reproducibility of the current software tools. We present here, an experiment designed as serial mixtures of vegetable juice/Water and human plasma at varying ratios, nicknamed “Bloody Mary 21(BM21) to test semi-quantification at –omics scale. A subset of features are expected to have their peak areas correlated with the mixing ratio. This dataset provides an opportunity to be used as benchmark to assess the performance in quantification of processing softwares. Overall, the BM21 experiment included a serial mixture of human plasma (Qstd) and vegetable juice (or water), at the ratio of 1024:1, 256:1, 64:1, 16:1, 4:1, 1:1, 1:4, 1:16, 1:64, 1:256 and 1:1024. Along with the 11 serial mixture samples, 100% vegetable juice and 100% plasma were also included. All samples were analyzed in triplicates.
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.