Project description:Vesicle associated membrane protein 2 (VAMP2/synaptobrevin2), a core SNARE protein residing on synaptic vesicles (SVs), forms helix bundles with syntaxin-1 and SNAP25 for the SNARE assembly. Prior to the SNARE assembly, the structure of VAMP2 is unclear. Here, by using in-cell NMR spectroscopy, we describe the dynamic membrane association of VAMP2 SNARE motif in mammalian cells, and the structural change of VAMP2 upon the change of intracellular lipid environment. We analyze the lipid compositions of the SV membrane by mass-spectrometry-based lipidomic profiling, and further reveal that VAMP2 forms distinctive conformations in different membrane regions. In contrast to the non-raft region, the membrane region of cholesterol-rich lipid raft markedly weakens the membrane association of VAMP2 SNARE motif, which releases the SNARE motif and facilitates the SNARE assembly. Our work reveals the regulation of different membrane regions on VAMP2 structure and sheds light on the spatial regulation of SNARE assembly.
Project description:The common house spider Parasteatoda tepidariorum is a chelicerate model organism for studying developmental mechanisms and their evolution in arthropods. In contrast to the well-studied model insect, Drosophila melanogaster, embryos of the spider undergo patterning in a cellular environment from early stages (at least after the number of the nuclei increase to 16). Use of spider embryos provide new opportunities to understand the evolution of developmental mechanisms underlying arthropod body plans. This analysis aims to generate genome-scale, developmental profiles of gene expression in embryos of the spider P. tepidariorum, which facilitate a wide range of studies using this spider species.
Project description:We proposed that DNA recombination/repair processes play a role in memory formation. Here, we used microarray analysis of rat amygdala genes to identify possible DNA recombination/repair factors involved in memory consolidation of conditioned taste aversion (CTA). Among the genes that showed statistically significant differential expression, we identified fen-1, encoding a flap-structure specific DNA endonuclease. Amygdalar fen-1 mRNA induction was associated to the illness component of CTA, since it could be observed by the pairing of a flavor and gastrointestinal illness, by the illness itself, but not by the presentation of the flavor alone. No CTA related induction of fen-1 expression was observed in the insular cortex. Importantly, functional validation studies demonstrated that amygdalar suppression of fen-1 expression impaired memory consolidation of CTA. Overall, our studies helped identify a new DNA recombination/repair candidate factor involved in memory formation of aversive experiences.
Project description:Bruton’s tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B cell and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, inhibitors of BTK have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain penetrant small molecule BTK inhibitors may also help to address compartmentalized neuroinflammation which is proposed to underlie MS disease progression. BTK is expressed by microglia, the resident innate immune cells of the brain, however the precise roles of microglial BTK and the impact of BTK inhibitors on microglial functions is still being elucidated. Much research to date has also focused on the effects of BTK inhibitors using rodent disease models. Here we characterize the pharmacological and functional properties of fenebrutinib (FEN), a potent, highly selective, noncovalent, reversible BTK inhibitor, in human microglia and complex human brain cell systems including brain organoids. We find that FEN blocks the effects of microglial FcγR activation including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by FEN treatment. In contrast, FEN had no significant impact on human microglial pathways linked to TLR4 or NLRP3 signaling nor myelin phagocytosis. Our study increases the understanding of BTK functions in human microglial signaling relevant to MS pathogenesis and suggests that FEN could attenuate detrimental microglial activity associated with FcγR activation in MS patients.
Project description:Generalist arthropod herbivores rapidly adapt to a broad range of host plants. However, the extent of transcriptional reprogramming in the herbivore and its hosts associated with adaptation remains poorly understood. Using the spider mite Tetranychus urticae and tomato as models with available genomic resources, we investigated the reciprocal genome-wide transcriptional changes in both spider mite and tomato as a consequence of mite’s adaptation to tomato We used microarray to assess global gene expression in Solanum lycopersicum cv. Moneymaker upon Tetranychus urticae attack by tomato-adapted and non-adapted spider mite lines.
Project description:We proposed that DNA recombination/repair processes play a role in memory formation. Here, we used microarray analysis of rat amygdala genes to identify possible DNA recombination/repair factors involved in memory consolidation of conditioned taste aversion (CTA). Among the genes that showed statistically significant differential expression, we identified fen-1, encoding a flap-structure specific DNA endonuclease. Amygdalar fen-1 mRNA induction was associated to the illness component of CTA, since it could be observed by the pairing of a flavor and gastrointestinal illness, by the illness itself, but not by the presentation of the flavor alone. No CTA related induction of fen-1 expression was observed in the insular cortex. Importantly, functional validation studies demonstrated that amygdalar suppression of fen-1 expression impaired memory consolidation of CTA. Overall, our studies helped identify a new DNA recombination/repair candidate factor involved in memory formation of aversive experiences. Two comparisons were established between the cRNA samples: CTA versus Flavor-only and CTA versus Toxin-only. For each comparison, the microarray experiment was repeated four times using new biological samples, each consisting of a sample pool from 3 animals. Two of the four biological replicates were performed as dye-swaps in order to correct for dye bias effects.