Project description:single cell RNA sequencing of iPSC and Human dermal fibroblasts using 10x Genomics with 3-prime, 5-prime poly(dT) primer, and 5-prime random primer. For comparison in gene, ncRNA and enhancer detection.
Project description:CAGE sequencing of iPSC and Human dermal fibroblasts, total RNA and fractionated into nuclear, cytoplasmic and chromatin fractions.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based methylation data of iNBSCs reprogrammed from adult dermal fibroblasts (ADF), iPSC-derived NBSCs and adult dermal fibroblasts. The data provided demonstrate robust changes in the methylation landscape after reprogramming of human adult dermal fibroblasts into iNBSCs.
Project description:We report gene expression by RNAtag-seq after treatment with 75 different small molecule perturbations in culture of human iPSC-derived cardiac myocytes and genetically matched primary dermal fibroblasts. Perturbations were chosen from the SelleckChem Bioactive Library, among all molecules targeting any kinases or G-protein coupled receptors, and chosen to have as little overlap in annotated targets as possible. Based on these experiments (and others) we show that transcription factors important for cardiac development and cardiac myocyte identity maintenance were frequently up-regulated (i.e., "responsive") after small molecule perturbations of cultured iPSC-derived cardiac myocytes (i.e., responsive). We also show that the set of highly responsive transcription factors in fibroblasts are enriched for barriers to fibroblast reprogramming to iPSC.
Project description:Single-cell RNA-seq of human dermal fibroblasts, stimulated with IFNB 1000 IU for 2 or 6 hours, and profiled using the SmartSeq2 protocol.