Project description:BTK plays a critical role in B cell malignancies survival. BTK inhibitor was successfully used as first line treatment for CLL in clinical. The emerging unmet needs is new segments are needed for ibrutinib R/R patients. The purpose of this study is to investigate genomic changes and signaling pathway differences after CLL cells were treated with BTK inhibitor (ibrutinib) or degrader (NRX0492).
Project description:Inactivating mutations in the NF-kB inhibitor NFKBIE are frequent in chronic lymphocytic leukemia (CLL) and have been associated with accelerated disease progression and inferior responses to chemotherapy. To further understand the role of NFKBIE mutations in CLL, we disrupted by CRISPR/Cas9 editing the NFKBIE gene in CLL cells derived from the Eμ-TCL1 transgenic mouse model and investigated how this will affect CLL growth and response to B cell receptor inhibitor treatment. In vitro and adoptive transfer experiments showed that NFKBIE-mutated cells have a growth advantage over NFKBIE-wild type cells when exposed to microenvironmental signals that activate the canonical NF-kB pathway and can induce alterations within the tumor microenvironment that may allow for escape from immune surveillance, including the expansion of CD8+ T cells with an exhausted phenotype and increased expression of PD-L1 on the malignant B cells. Consistent with these findings, significantly greater expression of the exhaustion markers PD1 and TIGIT was observed on T cells from CLL patients with NFKBIE-mutated compared to NFKBIE-wild type leukemia. In addition, in vitro and in vivo experiments showed that NFKBIE-mutated murine CLL cells are selectively resistant to BTK inhibitor treatment while remaining sensitive to treatment with a PI3K or SYK inhibitor. Reduced sensitivity to BTK inhibitor treatment was also observed in a series of 229 ibrutinib-treated CLL patients showing inferior outcomes for the NFKBIE-mutated cases. These findings provide evidence that NFKBIE-mutated CLL cells reshape and are selected by the tumor microenvironment and may account for suboptimal ibrutinib responses.
Project description:Ibrutinib, an irreversible Bruton Tyrosine Kinase (BTK) inhibitor, has revolutionized Chronic Lymphocytic Leukemia (CLL) treatment, but resistances to ibrutinib have emerged in relation or not to BTK mutations. Evolution patterns of CLL before and after ibrutinib therapy are often focused only on leukemic cells but must be investigated in the context of the CLL microenvironment. Single cell RNA-seq and related technologies allow a deeper characterization of cancer and normal cells. We therefore investigated whether ibrutinib treatment drives molecular changes in CLL. Here, we report the monitoring of a CLL patient under ibrutinib treatment using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq) technology. We report that the short clinical relapse of this patient, driven by BTK mutation, is associated with intra-clonal heterogeneity and transcriptional and phenotypical modifications in both B leukemic and immune cells. These results open new therapeutic strategies for ibrutinib-refractory CLL patients.
Project description:Continuous treatment with ibrutinib not only exerts tumor control but also enhances T cell function in patients with chronic lymphocytic leukemia (CLL). We conducted longitudinal multiomics analyses in samples from CLL patients receiving ibrutinib upfront to identify potential adaptive mechanisms to Bruton Tyrosine Kinase (BTK) inhibition during the first 12 months of continuous therapy. Wefound that in T cells, ibrutinib reduced the expression of exhaustion markers, the proportion of Tregs and Tfh cells, as well as expression of genes related to activation, proliferation, differentiation, and metabolism. In CLL cells, we observed a downregulation of immunosuppression, adhesion, and migration mechanisms. Adaptation at molecular level, characterized by an increase in cancer cell fraction of CLL cells with mutated driver genes, was observed in around half of the patients. Interestingly, BTK C481S mutations were detected as early as after 6 months of treatment, particularly enriched in subsets of malignant cells retaining migrative capacity. These CLL cells with potential migrative capacity under ibrutinib also exhibited a distinct transcriptomic profile including upregulation of mTOR-AKT and Myc pathways. We identified high expression of TMBIM6 as a potential novel independent poor prognostic factor. Of note, BIA, a TMBIM6 antagonist, induced CLL cell apoptosis and synergized with ibrutinib. In summary, our comprehensive multi-omics analysis of CLL patients undergoing ibrutinib therapy has unveiled early immunomodulatory effects on T cells and adaptative mechanisms in CLL cells. These findings can contribute to the identification of resistance mechanisms and the discovery of novel therapeutic targets.
Project description:The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has substantially improved therapeutic options for chronic lymphocytic leukemia (CLL). Although ibrutinib is not curative, it has a profound effect on CLL cells and may create new pharmacologically exploitable vulnerabilities. To identify such vulnerabilities, we developed a systematic approach that combines epigenome profiling (charting the gene-regulatory basis of cell state) with single-cell chemosensitivity profiling (quantifying cell-type-specific drug response) and bioinformatic data integration. By applying our method to a cohort of matched patient samples collected before and during ibrutinib therapy, we identified characteristic ibrutinib-induced changes that provide a starting point for the rational design of ibrutinib combination therapies. Specifically, we observed and validated preferential sensitivity to proteasome, PLK1, and mTOR inhibitors during ibrutinib treatment. More generally, our study establishes a broadly applicable method for investigating treatment-specific vulnerabilities by integrating the complementary perspectives of epigenetic cell states and phenotypic drug responses in primary patient samples.
Project description:Bruton’s tyrosine kinase (BTK) inhibitors such as ibrutinib represent an effective strategy for treatment of chronic lymphocytic leukemia (CLL), although ~30% of patients eventually undergo disease progression. Here we investigated the long-term modulation of the CXCR4dim/CD5bright proliferative fraction (PF) and the CXCR4bright/CD5dim resting fraction (RF) in CLL samples, and their correlation with therapeutic outcome and emergence of ibrutinib resistance. Longitudinal tracking by flow cytometry revealed that PF, initially suppressed by ibrutinib, reappeared upon early disease progression suggesting that PF evaluation could represent a sensitive and specific marker of CLL progression upon ibrutinib treatment. Transcriptomic analyses of PF at progression revealed similar proliferation signatures between pre- and post-treatment PF, demonstrating the emergence upon progression of a newly proliferating cell population.
Project description:Chronic lymphocytic leukemia (CLL) is a malignant lymphoproliferative disorder characterized by the accumulation of small mature B cells in blood and secondary lymphoid tissues. Novel drugs, such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, have greatly improved survival expectations of CLL patients, nevertheless acquired drug resistance represents a major challenge and the complete molecular mechanisms of which have not been elucidated yet. In order to fill this knowledge gap, we generated a mouse model of ibrutinib resistance by treating mice upon adoptive transfer of Eµ-TCL1 leukemia (TCL1-CLL) continuously with ibrutinib. After an initial response to the treatment, relapse under therapy occurs with an aggressive outgrowth of the malignant cells, resembling observations in patients. To unravel relapse mechanism, we performed transcriptome and proteome analyses of sorted TCL1-CLL cells both during treatment and after relapse. Comparative analysis of these omics layers suggested alterations in the proteasome activity as a driver of ibrutinib resistance. Accordingly, we showed that preclinical treatment with the irreversible proteasome inhibitor (PI) carfilzomib administered upon ibrutinib resistance prolonged survival of mice, thus acting as salvage therapy. Longitudinal proteomic analysis of CLL patients with ibrutinib resistance identified deregulation in protein post-translational modifications. In addition, CLL cells from ibrutinib-resistant patients effectively responded to several PIs in co-culture assays. Altogether, our results from orthogonal omics approaches identified proteasome inhibition as potentially attractive innovative salvage treatment option for CLL patients resistant or refractory to ibrutinib.