Project description:Three new species of CortinariussectionDelibuti, namely C.fibrillososalor, C.pseudosalor, and C.subtropicus are described as new to science based on morphological and phylogenetic evidences. Cortinariuspseudosalor is extremely morphologically similar to C.salor, but it differs from the latter by smaller coarsely verrucose basidiospores. Cortinariusfibrillososalor can be easily differentiated by its fibrillose pileus. The pileus of C.subtropicus becomes brown without lilac tint at maturity comparing with other members of section Delibuti. A combined dataset of ITS and LSU sequences was used for phylogenetic analysis. The phylogenetic reconstruction of section Delibuti revealed that these three new species clustered and formed independent lineages with full support respectively. A key to the three new species and related species of section Delibuti is provided in this work.
Project description:Cortinarius is the largest genus of ectomycorrhizal fungi worldwide. Recent molecular studies have shown high levels of morphological homoplasy within the genus. Importantly, DNA phylogenies can reveal characteristics that have been either over- or underemphasized in taxonomic studies. Here we sequenced and phylogenetically analysed a large set of pan-European and North American collections taxonomically studied and placed in Cortinarius sect. Bicolores and sect. Saturnini, according to traditional morpho-anatomical criteria. Our goal was to circumscribe the evolutionary boundaries of the two sections, to stabilize both the limits and nomenclature of relevant species, and to identify described taxa which, according to our current understanding, belong to other lineages. Our analysis resolves two clades: /Bicolores, including 12 species, one of which is new to science, and /Saturnini, including 6 species. Fifteen binomials, traditionally treated in these two sections based on morphology, do not belong to the above two phylogenetic clades. Instead, six of these latter are clearly placed in other clades that represent sect. Bovini, sect. Sciophylli, sect. Duracini and sect. Brunneotincti. The presence or absence of blue pigments and the detection of specific odours emerge as clearly misleading taxonomic features, but more surprisingly, spore size and ecology can be misleading as well. A total of 63 type specimens were sequenced, 4 neotypes and 2 epitypes are proposed here, and 1 new combination is made.
Project description:Cortinarius is a globally distributed agaricoid genus that has been well studied in Europe and America with over 1,000 described species. However, as part of an ongoing effort to investigate the diversity of Cortinarius section Anomali in China, the resource investigation and classification research are still limited, and the species diversity has not been clarified by far. During the re-examination of the Chinese Cortinarius specimens, C. cinnamomeolilacinus, C. subclackamasensis, and C. tropicus, belonging to the sect. Anomali, were described in China as new to science based on morphological examination and phylogenetic analysis. The three new species are described and illustrated in detail according to the Chinese materials. The phylogenetic analysis based on internal transcribed spacer sequences confirmed the placement of the three species in the Cortinarius sect. Anomali clade. Phylogenetically related and morphologically similar species to these three new species are discussed.
Project description:Cortinarius is an important ectomycorrhizal genus that forms a symbiotic relationship with certain trees, shrubs and herbs. Recently, we began studying Cortinarius in China and here we describe three new species of Cortinarius subg. Telamonia based on morphological and ecological characteristics, together with phylogenetic analyses. Cortinarius laccariphyllus sp. nov. (section Colymbadini) is associated with broadleaf trees, with strongly hygrophanous basidiomata, special Laccaria-like lamellae and white and extremely sparse universal veil. Cortinarius neotorvus sp. nov. (section Telamonia) is associated with broadleaf trees and is easily confused with C. torvus, but can be distinguished by the colour of the fresh basidiomes and the stipe usually somewhat tapering towards the base. Cortinarius subfuscoperonatus sp. nov. (section Fuscoperonati) is associated with coniferous trees, with subglobose to broadly ellipsoid spores and is closely related to C. fuscoperonatus. A key to the new species and similar species in sections Colymbadini, Telamonia and Fuscoperonati is provided.
Project description:Five new Cortinarius species, C. neobalaustinus, C. pseudocamphoratus, C. subnymphatus, C. wuliangshanensis and C. yanjiensis spp. nov., are proposed based on a combination of morphological and molecular evidence. Cortinarius neobalaustinus is characterized by a very weakly hygrophanous and yellowish-brown to brown pileus and small and weakly verrucose basidiospores. Cortinarius pseudocamphoratus can be characterized by a viscid pileus, a strongly unpleasant smell, amygdaloid to somewhat ellipsoid basidiospores and lageniform to subfusiform cheilocystidia. Cortinarius subnymphatus is identified by a strongly hygrophanous pileus that is reddish-brown with a black-brown umbo, a yellowish universal veil and ellipsoid to subamygdaloid basidiospores. Cortinarius wuliangshanensis is characterized by a moderately to strongly hygrophanous, translucently striated and yellowish to reddish-brown pileus and rather weakly and moderately verrucose basidiospores. Cortinarius yanjiensis is distinguished by a weakly to moderately hygrophanous and yellowish to brown pileus and moderately to rather strongly verrucose basidiospores. The phylogenetic analyses were performed with maximum likelihood and Bayesian inference methods based on the data set of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1-D2 domains of nuc 28S rDNA (28S) and RNA polymerase II second largest subunit (rpb2), and the results show that C. neobalaustinus, C. wulianghsanensis and C. yanjiensis cluster in sect. Illumini, C. pseudocamporatus belongs to sect. Camphorati and C. subnymphatus belongs to sect. Laeti. In addition, a study of basidiospores under field emission scanning electron microscopy (FESEM) was conducted. An identification key for the five new species and related species from China is also provided.
Project description:The new species Leucoagaricus variicolor is described from a public park in Zaragoza, Spain, based on both morphological and molecular characters. Illustrations of fresh basidiomata in situ and of the main macro- and micromorphological features are added. Leucoagaricusvariicolor belongs to section Piloselli and is compared with similar taxa.