Project description:Promoters and enhancers are key cis-regulatory elements, but how they operate to generate cell-type-specific transcriptomes is not fully understood. We developed a simple and robust approach to sensitively detect 5’-ends of nascent RNAs (NET-CAGE) in diverse cells and tissues, including unstable transcripts such as enhancer-derived RNAs. We studied RNA synthesis and degradation at the transcription start site (TSS) level, characterizing the impact of differential promoter usage on transcript stability. We quantified transcription from cis-regulatory elements without the influence of RNA turnover, and show that enhancer-promoter pairs are generally activated simultaneously upon stimulation. By integrating NET-CAGE data with chromatin interaction maps, we show that cis-regulatory elements are topologically connected according to their cell-type specificity. We identified new enhancers with high sensitivity, and delineated primary locations of transcription within super-enhancers. Our NET-CAGE dataset derived from human and mouse cells expands the FANTOM5 catalogue of transcribed enhancers, with broad applicability to biomedical research.
Project description:Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres—an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Project description:Due to the demands for both environmental protection and modernization of the goose industry in China, the traditional goose waterside rearing systems have been gradually transitioning to the modern intensive dryland rearing ones, such as the net-floor mixed rearing system (MRS) and cage rearing system (CRS). However, the goose immune responses to different dryland rearing systems remain poorly understood. This study aimed to investigate and compare the age-dependent effects of MRS and CRS on the splenic histomorphological characteristics and immune-related genes expression profiles among three economically important goose breeds, including Sichuan White goose (SW), Gang goose (GE), and Landes goose (LD). Morphological analysis revealed that the splenic weight and organ index of SW were higher under CRS than under MRS (p < 0.05). Histological observations showed that for SW and LD, the splenic corpuscle diameter and area as well as trabecular artery diameter were larger under MRS than under CRS at 30 or 43 weeks of age (p < 0.05), while the splenic red pulp area of GE was larger under CRS than under MRS at 43 weeks of age (p < 0.05). Besides, at 43 weeks of age, higher mRNA expression levels of NGF, SPI1, and VEGFA in spleens of SW were observed under MRS than under CRS (p < 0.05), while higher levels of HSPA2 and NGF in spleens of LD were observed under MRS than under CRS (p < 0.05). For GE, there were higher mRNA expression levels of MYD88 in spleens under CRS at 30 weeks of age (p < 0.05). Moreover, our correlation analysis showed that there appeared to be more pronounced positive associations between the splenic histological parameters and expression levels of several key immune-related genes under MRS than under CRS. Therefore, it is speculated that the geese reared under MRS might exhibit enhanced immune functions than those under CRS, particularly for SW and LD. Although these phenotypic differences are assumed to be associated with the age-dependent differential expression profiles of HSPA2, MYD88, NGF, SPI1, and VEGFA in the goose spleen, the underlying regulatory mechanisms await further investigations.
Project description:Pancreatic adenocarcinoma (PDAC) is one of the most lethal human malignancies and a major health problem. Patient-derived xenografts (PDX) are appearing as a prime approach for preclinical studies despite being insufficiently characterized as a model of the human disease and its diversity. We generated subcutaneous PDX from PDAC samples obtained either surgically or using diagnostic biopsies (endoscopic ultrasound guided fine needle aspirate). The extensive multiomics characterization of the xenografts demonstrated that PDX is a suitable model for preclinical studies, representing the diversity of the primary cancers. this dataset, describe the RNA sequencing data used in the multiomics study.