Project description:We compiled the transcriptome by extracting mRNA, reverse transcription and Illumina sequencing, followed by assembly and annotation by comparison with public databases (including; Nr, SwissProt and COG). Quantitative data on the transcription abundance of each putative protein sequence is provided as assesed by the SOAPdenovo_trans assembly tool.
Project description:We developed a method to deconvolute decays of m6A mRNAs and their unmethylated isoforms from newly synthesized total RNAs across the transcriptome to study the effects of m6A modification on decays of not only the m6A-modified RNA pool but also the unmehnylated isoform pool.
Project description:Molecular methods are increasingly used to identify pathogens that are difficult to cultivate. We report a case of disseminated infection with "Mycobacterium tilburgii," a proposed species that has never been cultivated. The case illustrates the diagnostic utility of sequence analysis of the 16S rRNA gene directly from clinical specimens.
Project description:Using a newly-developed workflow for quantitative newly synthesized proteome analysis (QuaNPA), featuring automated sample processing and multiplexed DIA (plexDIA) analysis, changes in the newly synthesized proteome of IFN-gamma treated Hela cells were monitored over time.
Project description:Angiogenesis is a critical process to form new blood vessels from preexisting vessels under physiologic and pathologic conditions and involves cellular and morphologic changes such as endothelial cell proliferation, migration, and vascular tube formation. Despite evidence that angiogenic factors, including vascular endothelial growth factor and Notch, control various aspects of angiogenesis, the molecular mechanisms underlying gene regulation in blood vessels and surrounding tissues are not fully understood. Importantly, recent studies demonstrate that Forkhead transcription factor Foxc2 directly regulates expression of various genes involved in angiogenesis, CXCR4, integrin beta3, Delta-like 4 (Dll4), and angiopoietin 2, thereby controlling angiogenic processes. Thus, Foxc2 is now recognized as a novel regulator of vascular formation and remodeling. This review summarizes current knowledge about the function of Foxc2 in angiogenesis and discusses prospects for future research in Foxc2-mediated pathologic angiogenesis in cardiovascular disease.