Project description:Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus, to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the harbor seal population at least since 2008. The presence of the Seal parvovirus in the brain was confirmed by real-time PCR and in vitro replication. Using in situ hybridization, we showed for the first time that a parvovirus of the genus Erythrovirus was present in the Virchow-Robin space and in cerebral parenchyma adjacent to the meninges. These findings showed that a parvovirus of the genus Erythrovirus can be involved in central nervous system infection and inflammation, as has also been suspected but not proven for human parvovirus B19 infection.
Project description:Parvovirus B19 (B19V) is a human pathogenic virus of clinical relevance, characterized by a selective tropism for erythroid progenitor cells in bone marrow. Relevant information on viral characteristics and lifecycle can be obtained from experiments involving engineered genetic systems in appropriate in vitro cellular models. Previously, a B19V genome of defined consensus sequence was designed, synthesized and cloned in a complete and functional form, able to replicate and produce infectious viral particles in a producer/amplifier cell system. Based on such a system, we have now designed and produced a derived B19V minigenome, reduced to a replicon unit. The genome terminal regions were maintained in a form able to sustain viral replication, while the internal region was clipped to include only the left-side genetic set, containing the coding sequence for the functional NS1 protein. Following transfection in UT7/EpoS1 cells, this minigenome still proved competent for replication, transcription and production of NS1 protein. Further, the B19V minigenome was able to complement B19-derived, NS1-defective genomes, restoring their ability to express viral capsid proteins. The B19V genome was thus engineered to yield a two-component system, with complementing functions, providing a valuable tool for studying viral expression and genetics, suitable to further engineering for purposes of translational research.
Project description:Human parvovirus B19 is the only parvovirus known to be a human pathogen. The structure of recombinant B19-like particles has been determined to approximately 3.5-A resolution by x-ray crystallography and, to our knowledge, represents the first near-atomic structure of an Erythrovirus. The polypeptide fold of the major capsid protein VP2 is a "jelly roll" with a beta-barrel motif similar to that found in many icosahedral viruses. The large loops connecting the strands of the beta-barrel form surface features that differentiate B19 from other parvoviruses. Although B19 VP2 has only 26% sequence identity to VP3 of adeno-associated virus, 72% of the C(alpha) atoms can be aligned structurally with a rms deviation of 1.8 A. Both viruses require an integrin as a coreceptor, and conserved surface features suggest a common receptor-binding region.
Project description:We report here the sequences of two reference strains of parvovirus B19 (B19V) used for quantitation of B19V DNA. One reference strain has been established by the World Health Organization (WHO) and the other by the European Pharmacopeia (Ph. Eur.) and belong to B19V genotype 1a1 and 1a2, respectively.
Project description:The morphology of the skull contains considerable ecological information about a species, because the skull contains sensory organs that are used to look for food, compete for mates, or to migrate. Spotted seals (Phoca largha) and harbor seals (Phoca vitulina) are similar in body size and pelage color but differ in habitat use and reproductive biology. The current study aims to clarify differences in the shapes of skulls in the spotted and harbor seals using geometric morphometrics and to discuss whether ecological differences can explain morphological differences in skulls. First, we discovered that the age at which the shape of skulls stopped changing was 7 years in both species, using the linear-threshold model. Using a total of 75 landmarks, 54 individuals (25 spotted seals, 29 harbor seals) that were older than the age at which skulls stopped changing were correctly identified at a rate of 100%. The total of 75 landmarks was narrowed down to eight key landmarks that resulted in an identification accuracy rate of 100% using random forests. Of the eight landmarks, seven were related to feeding apparatus, indicated that the harbor seal had a broader mouth and mandible than the spotted seal. Because of both species were dietary generalists and classified as pierce feeders, we suggested that the different features in the shapes of their skulls were caused not only by differences in their feeding behavior but also other differences related to reproductive behavior.
Project description:A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00 × 10(-4) for the partial NS gene and 1.15 × 10(-4) for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.
Project description:The aim of this study was to estimate substitution rate and imprints of natural selection on parvovirus B19 genotype 1. Studied datasets included 137 near complete coding B19 genomes (positions 665 to 4851) for phylogenetic and substitution rate analysis and 146 and 214 partial genomes for selection analyses in open reading frames ORF1 and ORF2, respectively, collected 1973-2012 and including 9 newly sequenced isolates from Serbia. Phylogenetic clustering assigned majority of studied isolates to G1A. Nucleotide substitution rate for total coding DNA was 1.03 (0.6-1.27) x 10-4 substitutions/site/year, with higher values for analyzed genome partitions. In spite of the highest evolutionary rate, VP2 codons were found to be under purifying selection with rare episodic positive selection, whereas codons under diversifying selection were found in the unique part of VP1, known to contain B19 immune epitopes important in persistent infection. Analyses of overlapping gene regions identified nucleotide positions under opposite selective pressure in different ORFs, suggesting complex evolutionary mechanisms of nucleotide changes in B19 viral genomes.