Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion clones in HAP1 (t72) and HepG2 (t15). By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion (t8) and intergenic region deletion (i50) clones in HepG2 . By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:<p> The casuarina moth (Lymantria xylina) is a notorious forestry pest, posing severe ecological and economic threats due to its destructive defoliation outbreaks and high invasive potential. Despite its significance, a high-quality reference genome has been lacking, limiting molecular-level investigations into its biology and hindering the development of effective pest management strategies. In this study, we report the first chromosome-level genome assembly of L. xylina generated through a combination of illumina short-reads, Oxford Nanopore long-reads, and Hi-C scaffolding. The final assembly spans 977.74 Mb, with 95.17% anchored to 31 pseudo-chromosomes, achieving a scaffold N50 of 34.15 Mb. Importantly, telomeric sequences were identified at both ends of all 31 pseudo-chromosomes, underscoring the exceptional quality and completeness of this reference genome. Quality assessment further revealed a BUSCO completeness of 94.5% and a consensus QV of 31.72. We also annotated 18,484 protein-coding genes, 95.21% of which were functionally assigned, and characterized genome-wide repetitive elements (77.18%).</p><p> Beyond the genome assembly, we generated comprehensive RNA-seq and metabolomic datasets across multiple diapause stages, enabling insights into gene expression dynamics and metabolic regulation during egg development. Together, these resources provide a valuable foundation for studying the genetic basis of host adaptation, invasiveness, and interactions with natural enemies such as nucleopolyhedrovirus and Beauveria bassiana.</p>