Project description:The Quartet Project aims to provide resources for QC of multiple types of omic technologies and the effective integration of diverse datasets from various scenarios. Large quantities of multi-omics materials, datasets, and best practices for their QC utilities were developed for whole process QC of large-scale, multi-center, and longitudinal multi-omics profiling.
2023-09-04 | GSE241900 | GEO
Project description:The Quartet Project for Quality Control of Multi-omics Profiling
Project description:We generated Multiome RNA+ATAC data from the same cell from human PBMC. This served as a gold benchmark for a novel integration method for multi-omics data that we developed.
Project description:We generated Multiome RNA+ATAC data from the same cell from human PBMC. This served as a gold benchmark for a novel integration method for multi-omics data that we developed.
Project description:The Project aims to provide resources for QC of multiple types of omic technologies and effective integration of diverse datasets from various scenarios. Large quantities of multi-omics materials, datasets, and best practice for their QC utilities were developed for whole process QC of large scale, multi-center, and longitudinal multi-omics profiling.
Project description:Integration of multiple data modalities in a spatially informed manner remains an unmet need for exploiting spatial multi-omics data. Here, we introduce SpatialGlue, a novel graph neural network with dual-attention mechanism, to decipher spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrate that SpatialGlue can more accurately resolve spatial domains at a higher resolution across different tissue types and technology platforms, to enable biological insights into cross-modality spatial correlations.
Project description:In this study we used single cell multi-omics profiling to create an atlas of the human YS to gain insights into its haematopoietic, metabolic and nutritive functions during early embryonic development. This contains CITE-seq data (surface protein and cytosolic RNA content) data from two biological replicates. Pooled lanes were demultiplexed using SoupOrCell (for alignment and demultiplexing software and version numbers, please see accompanying manuscript and protocols within this accession). Raw count files provided are directly as output by alignment software, without any quality control applied. Quality control is described in accompanying manuscript methods. Metadata by barcode are provided as supplementary tables in accompanying manuscript.
Project description:Genome-wide methylation profiles were generated as part of a multi-omics characterization (SNP array, WES, RNA-seq, cDNA microarray) of a panel of gliomasphere cell lines and matched parental tumors. See https://www.ncbi.nlm.nih.gov/pubmed/27571888 about the GlioTeX panel. Methylation profiling data in this record come from tumour samples. SNP array (ArrayExpress E-MTAB-4804), cDNA microarray (ArrayExpress E-MTAB-4803), WES and RNAseq (European Genome-Phenome Archive EGAS00001001871) have been published before. In addition, for the current project we compare 450K methylation data to nanopore sequencing based methylation profiles. These sequencing data will be accessible via European Genome-Phenome Archive (EGAS00001002213). Please also refer to https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5795/files/E-MTAB05795.additional.1.zip for further information on the background of this multi-omics study.
Project description:In this study we used single cell multi-omics profiling to create an atlas of the human YS to gain insights into its haematopoietic, metabolic and nutritive functions during early embryonic development. This contains fetal liver CITE-seq (surface protein and cytosolic RNA content) data from six biological replicates. Pooled lanes were demultiplexed using SoupOrCell (for alignment and demultiplexing software and version numbers, please see accompanying manuscript and protocols within this accession). Raw count files provided are directly as output by alignment software, without any quality control applied. Quality control is described in accompanying manuscript methods. Metadata by barcode are provided as supplementary tables in accompanying manuscript.
Project description:In this study we used single cell multi-omics profiling to create an atlas of the human YS to gain insights into its haematopoietic, metabolic and nutritive functions during early embryonic development. This contains embryonic liver CITE-seq (surface protein and cytosolic RNA content) data from three biological replicates. Pooled lanes were demultiplexed using SoupOrCell (for alignment and demultiplexing software and version numbers, please see accompanying manuscript and protocols within this accession). Raw count files provided are directly as output by alignment software, without any quality control applied. Quality control is described in accompanying manuscript methods. Metadata by barcode are provided as supplementary tables in accompanying manuscript.