Project description:To elucidate the molecular mechanisms of tumor growth inhibition caused by the anti-LN-332 antibodies, we plated human A431 cells on plates coated with fibroblast-derived matrix for 6 hours and then added a mixture of antibodies against all three LN-332 chains or control IgG to the medium for 16 hours. All cells from antiobody treated and controls were collected and subjected to global transcriptome analysis using Affymetrix Human Genome U133 Plus 2.0 Arrays.
Project description:Saliva based diagnostics is a rapidly evolving field due to the large potential of saliva and the simple sample collection. A systematic comparison of IgG antibody profiles in saliva and plasma is currently lacking in scientific literature. Our hypothesis is that IgG profiles are equal in blood and saliva. By showing the equality of the profiles and relative IgG antigenic reactivities towards proteins and peptides we provide evidence that plasma IgG reactivities can be inferred from saliva IgG reactivities. IgG antibodies were isolated from human saliva and plasma samples. The reactivities of IgG isolates were analysed on peptide microarrays displaying linear epitopes of EBV (EBNA1 protein) and HBV (Large envelope protein) virus. Peptide arrays were printed by JPT Peptide Technologies (Berlin, Germany). We show high similarity of saliva and plasma IgG profiles on these two platforms and argue for generalisation from this subset to the whole immunological IgG antibody profile.
Project description:Saliva based diagnostics is a rapidly evolving field due to the large potential of saliva and the simple sample collection. A systematic comparison of IgG antibody profiles in saliva and plasma is currently lacking in scientific literature. Our hypothesis is that IgG profiles are equal in blood and saliva. By showing the equality of the profiles and relative IgG antigenic reactivities towards proteins and peptides we provide evidence that plasma IgG reactivities can be inferred from saliva IgG reactivities. IgG antibodies were isolated from human saliva and plasma samples. The reactivities of IgG isolates were analysed on peptide microarrays displaying linear epitopes of EBV (EBNA1 protein) and HBV (Large envelope protein) virus. Peptide arrays were printed by JPT Peptide Technologies (Berlin, Germany). We show high similarity of saliva and plasma IgG profiles on these two platforms and argue for generalisation from this subset to the whole immunological IgG antibody profile.
Project description:Elevated N-linked glycosylation of immunoglobulin G variable regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design included adaptive immune receptor repertoire sequencing to quantify and characterize N-glycosylation sites in the global B cell receptor repertoire, proteomics to examine glycosylation patterns of the circulating IgG, and production of human-derived recombinant autoantibodies, which were studied with mass spectrometry and antigen binding assays to confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the B cell repertoire of MG patients when compared to healthy donors. Motifs were introduced by both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the circulating IgG in a subset of MG patients. Autoantigen binding, by patient-derived MG autoantigen-specific monoclonal antibodies with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of variable region N-linked glycosylation in autoimmunity to MG subtypes. Although occupied IgG-VN-Glyc motifs are found on MG autoantigen-specific monoclonal antibodies, they are not required for binding to the autoantigen in this disease.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:The antiphospholipid syndrome (APS) is an autoimmune disease in which antiphospholipid antibodies (aPL) cause vascular thrombosis (VT+) and/or pregnancy morbidity (PM+). The experiment aimed at determining whether specific aPL are associated with thrombotic or obstetric manifestations. In the present study we carried out microarray analysis comparing patterns of mRNA expression in monocytes from a healthy volunteer exposed to IgG from patients with a history of vascular thrombosis (VT+/PM-) or pregnancy morbidity (VT-/PM+) or to IgG from healthy controls (HC).