Project description:Whole genome resequencing of three Saccharomyces pastorianus strains using a HiSeq2000 sequencer resulting in 100bp paired-end reads.
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus mutants obtained by random mutagenesis using radicicol. Mutants derived from the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report changes in transcriptome of the mutants compared to their respective parental strain
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus, lager yeast strains, the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report that the gene expression patterns are correlated with the gene copy number of S. cerevisiae and S. eubayanus alleles.
Project description:Saccharomyces pastorianus is a natural yeast evolved from different hybridisation events between the mesophilic S. cerevisiae and the cold-tolerant S. eubayanus. This complex aneuploid hybrid carries multiple copies of the parental alleles alongside specific hybrid genes and encodes for multiple protein isoforms which impart novel phenotypes, such as the strong ability to ferment at low temperature. These characteristics lead to agonistic competition for substrates and a plethora of biochemical activities, resulting in a unique cellular metabolism. Here, we investigated the transcriptional signature of the different orthologous alleles in S. pastorianus during temperature shifts.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.