Project description:Rhodamin 123 is a dye which can be used to detect the activity of ABC transporters. We observed that after staining of KM-H2 Hodgkin lymphoma cells with Rhodamin 123, part of the cells rapidly eliminated the dye, while another part of the cells retained the dye for a longer time. We compared the transcriptome of KM-H2 Hodgkin lymphoma cells with high Rhodamin 123 efflux capacity and KM-H2 cells with low Rhodamin 123 efflux capacity.
Project description:Down syndrome is characterized by trisomy 21 or partial duplication of chromosome 21. There have been extensive studies focusing on the identification of the Down Syndrome Critical Region (DSCR). Our case aims in providing evidence that duplication of 21q21.1-q21.2 is not included in the DSCR and that it has no clinical consequences on the phenotype. Due to missing the appropriate gestational age for serological screening, Non-Invasive Prenatal Testing (NIPT) analysis was performed for a pregnant woman with normal prenatal examinations at 22 weeks of gestation. The result of NIPT revealed a 5.8Mb maternally inherited duplication of 21q21.1-q21.2. To test whether the fetus also carried this duplication, ultrasound-guided amniocentesis was conducted and the result of chromosomal microarray analysis (CMA) with amniotic fluid showed a 6.7Mb duplication of 21q21.1-q21.2 (ranging from position 18,981,715 to 25,707,009) for the fetus. This partial duplication of 21q21.1-q21.2 for the fetus was maternally inherited. The pregnant woman and her family decided to continue the pregnancy after genetic counseling. This case clearly indicates that 21q21.1-q21.2 duplication is not included in the DSCR and most probably has no clinical consequences on the phenotype.
Project description:GSM1056261-GSM1056272: NFX1-123 has been shown to associate with a number of RNA processing proteins, such as cytoplasmic poly(A) binding proteins (PABPC), to affect mRNA stability and translational efficiency of target genes. The high-risk human papillomavirus type 16E6 (HPV 16E6) induces telomerase activity by activation of hTERT, the catalytic subunit of telomerase. NFX1-123 can bind to hTERT mRNA and increase its stability in HPV 16E6 expressing keratinocytes (16E6 NHKs). Little is known regarding what other transcripts, and downstream signaling pathways, may be dependent on NFX1-123. In order to determine additional cellular transcripts affected by HPV 16E6 and NFX1-123, we assessed global gene expression changes in cells in which NFX1-123 was overexpressed or knocked down by short hairpin RNAs (shRNA) when compared to an isogenic scramble control, in three independently derived 16E6 NHKs GSM1212499-GSM1212510: NFX1-123 has been shown to associate with a number of RNA processing proteins, such as cytoplasmic poly(A) binding proteins (PABPC), to affect mRNA stability and translational efficiency of target genes. The high-risk human papillomavirus type 16E6 (HPV 16E6) induces telomerase activity by activation of hTERT, the catalytic subunit of telomerase. NFX1-123 can bind to hTERT mRNA and increase its stability in HPV 16E6 expressing keratinocytes (16E6 NHKs). Little is known regarding what other transcripts, and downstream signaling pathways, may be dependent on NFX1-123. In order to determine additional cellular transcripts affected solely by NFX1-123, we assessed global gene expression changes in cells in which NFX1-123 was overexpressed or knocked down by short hairpin RNAs (shRNA) when compared to an isogenic scramble control, in three independently derived NHKs.
Project description:GSM1056261-GSM1056272: NFX1-123 has been shown to associate with a number of RNA processing proteins, such as cytoplasmic poly(A) binding proteins (PABPC), to affect mRNA stability and translational efficiency of target genes. The high-risk human papillomavirus type 16E6 (HPV 16E6) induces telomerase activity by activation of hTERT, the catalytic subunit of telomerase. NFX1-123 can bind to hTERT mRNA and increase its stability in HPV 16E6 expressing keratinocytes (16E6 NHKs). Little is known regarding what other transcripts, and downstream signaling pathways, may be dependent on NFX1-123. In order to determine additional cellular transcripts affected by HPV 16E6 and NFX1-123, we assessed global gene expression changes in cells in which NFX1-123 was overexpressed or knocked down by short hairpin RNAs (shRNA) when compared to an isogenic scramble control, in three independently derived 16E6 NHKs GSM1212499-GSM1212510: NFX1-123 has been shown to associate with a number of RNA processing proteins, such as cytoplasmic poly(A) binding proteins (PABPC), to affect mRNA stability and translational efficiency of target genes. The high-risk human papillomavirus type 16E6 (HPV 16E6) induces telomerase activity by activation of hTERT, the catalytic subunit of telomerase. NFX1-123 can bind to hTERT mRNA and increase its stability in HPV 16E6 expressing keratinocytes (16E6 NHKs). Little is known regarding what other transcripts, and downstream signaling pathways, may be dependent on NFX1-123. In order to determine additional cellular transcripts affected solely by NFX1-123, we assessed global gene expression changes in cells in which NFX1-123 was overexpressed or knocked down by short hairpin RNAs (shRNA) when compared to an isogenic scramble control, in three independently derived NHKs. GSM1056261-GSM1056272: Three independent 16E6 expressing NHK cell lines were expanded and transduced with: short hairpin RNA (sh1) that knocked down NFX1-123 by 20%, short hairpin RNA (sh3) that knocked down NFX1-123 by 80%; a non-targeting isogenic shRNA scramble control; or a NFX1-123 overexpression construct with a FLAG-tag (FNFX1-123WT) that increased its RNA expression on average 3.5-fold. In total, twelve samples were used for the microarray, derived from the three initial NHK cell lines. GSM1212499-GSM1212510: Three independent NHK cell lines were expanded and transduced with: short hairpin RNA (sh1) that knocked down NFX1-123 by 40%, short hairpin RNA (sh3) that knocked down NFX1-123 by 83%; a non-targeting isogenic shRNA scramble control; or a NFX1-123 overexpression construct with a FLAG-tag (FNFX1-123WT) that increased its RNA expression on average 14.0-fold. In total, twelve samples were used for the microarray, derived from the three initial NHK cell lines.