Project description:SPARC is a matricellular glycoprotein involved in regulation of the extracellular matrix, growth factors, adhesion, and migration. SPARC-null mice have altered basement membranes and develop posterior sub-capsular cataracts with cell swelling and equatorial vacuoles. Exchange of fluid, nutrients, and waste products in the avascular lens is driven by a unique circulating ion current. Here we demonstrate that SPARC-null mouse lenses exhibit abnormal circulation of fluid, ion, and small molecules which leads to altered fluorescein distribution in vivo, loss of resting membrane polarization, and altered distribution of small molecules. Microarray analysis of SPARC-null lenses showed changes in gene expression of ion channels and receptors, matrix and adhesion genes, cytoskeleton, immune response genes, and cell signaling molecules. Our results demonstrate that the regulation of SPARC on cell-capsular matrix interactions can influence the circulation of fluid and ions in the lens, and the phenotype in the SPARC-null mouse lens is the result of multiple intersecting pathways.
Project description:SPARC is a matricellular glycoprotein involved in regulation of the extracellular matrix, growth factors, adhesion, and migration. SPARC-null mice have altered basement membranes and develop posterior sub-capsular cataracts with cell swelling and equatorial vacuoles. Exchange of fluid, nutrients, and waste products in the avascular lens is driven by a unique circulating ion current. Here we demonstrate that SPARC-null mouse lenses exhibit abnormal circulation of fluid, ion, and small molecules which leads to altered fluorescein distribution in vivo, loss of resting membrane polarization, and altered distribution of small molecules. Microarray analysis of SPARC-null lenses showed changes in gene expression of ion channels and receptors, matrix and adhesion genes, cytoskeleton, immune response genes, and cell signaling molecules. Our results demonstrate that the regulation of SPARC on cell-capsular matrix interactions can influence the circulation of fluid and ions in the lens, and the phenotype in the SPARC-null mouse lens is the result of multiple intersecting pathways. Experiment Overall Design: Lens epithelial cells from 7 lenses of littermate mice were isolated by laser capture microdissection. 3 wild-type lenses from 3 different mice and 4 knock-out lenses from 3 different mice were used as biological replicates.
Project description:Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels within the nucleus. Sequence-specific DNA-binding transcription factor CTCF EDIT. Topologically associated domains (TADs). Using Hi-C, we investigated changes in chromatin organization between newborn (P0.5) mouse lens fiber and epithelium and compared them to embryonic stem (ES) cells. Compartments A and B. Using ChIP-seq, we determined localization of CTCF in both lens tissues Formation of lens-specific TADs is demonstrated via comparative studies of chromatin at Pax6, Prox1, Gata3, Hsf4, and crystallin loci (to be updated) between lens and ES cell nuclei. Our study has generated the first data on nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells.
Project description:Analysis of gene expression in mouse lens epithelium with or without UVB-irradiation in mouse eye lens. Results provide insight into a role for the respons to UVB-irradiation in lens epithelial cells.
Project description:Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular composition of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein composition between the lens epithelium and fibers, we employed tandem mass spectrometry (2DLC/ MS) analysis of micro-dissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular process and subcellular localization, were adapted for lens. Expression levels of both epithelial and fiber proteomes were compared with their temporal and spatial mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins, translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown function in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets established reference mouse lens epithelium and fiber cell proteomes, provided quantitative analyses of protein and RNA-Seq data, and probed the major proteome remodeling required to form the mature lens fiber cells.
Project description:E12.5 mouse lens epithelium and fiber cells were collected using Leica LMD 6000 Laser microdissection system. Total RNA was isolated from epithelium and fiber cells using Qiagen RNeasy kit
Project description:The lens is comprised of the anterior lens epithelium and posterior lens fibers, which form the bulk of the lens. The RNAseq data enables identification of lens epithelium and fiber differentially expressed genes and temporally differentially expressed genes which were also validated by qRTPCR. The present RNA-seq data serves as a comprehensive reference resource for deciphering molecular principles of normal mammalian lens differentiation, mapping a full spectrum of signaling pathways and DNA-binding transcription factors operating in both lens compartments, and predicting novel pathways required to establish lens transparency.