Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Autoimmune diseases, such as rheumatoid arthritis, are associated with significant gut microbiota dysbiosis. Here we show that remodelling of 24h rhythms within the gut during inflammatory joint disease drives profound changes in the microbiome and gut permeability.
Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.
Project description:The mammalian gastrointestinal tract contains a diverse ecosystem of microbial species collectively making up the gut microbiome. Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development. Consumption of unhealthy yet palatable dietary factors associated with obesity and metabolic dysfunction (e.g., saturated fat, added sugar) produces microbiota dysbiosis and negatively impacts neurocognitive function, particularly when consumed during early life developmental periods. Here we explore whether excessive early life consumption of added sugars negatively impacts neurocognitive development via the gut microbiome. Using a rodent model of habitual sugar-sweetened beverage (SSB) consumption during the adolescent stage of development, we first show that excessive early life sugar intake impairs hippocampal-dependent memory function when tested during adulthood while preserving other neurocognitive domains. Gut microbiome genomic sequencing analyses reveal that early life SSB consumption alters the abundance of various bacterial populations, including elevations in operational taxonomic units within the genus Parabacteroides (P. distasonis and P. johnsonii) whose abundance negatively correlated with memory task performance. Additional results reveal that in vivo Parabacteroides enrichment of cultured P. distasonis and P. johnsonii bacterial species in adolescent rats severely impairs memory function during adulthood. Hippocampus transcriptome analyses identify gene expression alterations in neurotransmitter synaptic signaling, intracellular kinase signaling, metabolic function, neurodegenerative disease, and dopaminergic synaptic signaling-associated pathways as potential mechanisms linking microbiome outcomes with memory impairment. Collectively these results identify microbiota dysbiosis as a mechanism through which early life unhealthy dietary patterns negatively impact neurocognitive outcomes.
Project description:To uncover the role of opioid induced dysbiosis in disrupting intestinal homeostasis, we conducted a multi-omics analysis with gut microbial, metabolite and intestinal transcriptomics data
Project description:To uncover the role of opioid induced dysbiosis in disrupting intestinal homeostasis, we conducted a multi-omics analysis with gut microbial, metabolite and intestinal transcriptomics data
Project description:Erythromycin (ERY) is a commonly used antibiotic that can be found in wastewater effluents globally. Due to the mechanisms by which they kill and prevent bacterial growth, antibiotics can have significant unwanted impacts on the fish gut microbiome. The overall objective of this project was to assess the effects of erythromycin and an antibiotic mixture on fish gut microbiomes. The project was split into two experiments to assess gut microbiome in response to exposure with ERY alone or in mixture with other common antibiotics. The objectives of experiment 1 were to understand uptake and depuration of ERY in juvenile rainbow trout (RBT) over a 7 d uptake followed by a 7 d depuration period using three concentrations of ERY. Furthermore, throughout the study changes in gut microbiome response were assessed. In experiment 2, a follow-up study was conducted using an identical experimental design to assess the impacts of an antibiotic-mixture (ERY, ampicillin, metronidazole, and ciprofloxacin at 100 µg/g each). Here, three matrices were analyzed, with gut collected for 16s metabarcoding, plasma for untargeted metabolomics, and brain for mRNA-seq analysis. ERY was depurated from the fish relatively quickly and gut microbiome dysbiosis was observed at 7 d after exposure, with a slight recovery after the 7 d depuration period. A greater number of plasma metabolites was dysregulated at 14 d compared to 7 d revealing temporality compared to gut microbiome dysbiosis. Furthermore, several transformation products of antibiotics and biomarker metabolites were observed in plasma due to antibiotic exposure. Brain transcriptome revealed only slight alterations due to antibiotic exposure. The results of these studies will help inform aquaculture practitioners and risk assessors when assessing the potential impacts of antibiotics in fish feed and the environment, with implications for host health.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:DNA methylation profile of mouse sperm from conventionally-raised mice and gut dysbiosis experienced mice were characterized using whole-genome bisulfite sequencing. Genome-wide DNA methylation changes between control and dysbiotic male�s sperm were highly comparable, with no change in DNAme globally or at genomic features, only 21 differentially methylated regions (DMR) were identified, which did not overlap known regulatory elements. Epididymal sperm samples were harvested from 11 weeks old inbred male mice that were experiencing gut microbiota dysbiosis for 6-week (antibiotics treated, n=5), or drink sterilized water (control, n=5).
Project description:The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammatory-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett’s esophagus and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague Dawley rats, with or without reflux-induction received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis, and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory and immune-implicated proteins and genes including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1β, Lbp, Lcn2, Myd88, Nfkb1, Tlr2 and Tlr4 aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation and cellular damage.