Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer-perturb data of one cerebral organoid with simultaneous TSC2 perturbation and lineage recording.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer data of 12 cerebral organoids.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the spatial iTracer data of three slices of one cerebral organoid measured by 10x Visium.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer data of two microdissected regions of one cerebral organoid.
Project description:Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enable highly resolved descriptions of cell states within these systems; however, approaches are needed to directly measure lineage relationships. Here we establish iTracer, a lineage recorder that combines reporter barcodes with inducible CRISPR-Cas9 scarring and is compatible with single-cell and spatial transcriptomics. We apply iTracer to explore clonality and lineage dynamics during cerebral organoid development and identify a time window of fate restriction as well as variation in neurogenic dynamics between progenitor neuron families. We also establish long-term four-dimensional light-sheet microscopy for spatial lineage recording in cerebral organoids and confirm regional clonality in the developing neuroepithelium. We incorporate gene perturbation (iTracer-perturb) and assess the effect of mosaic TSC2 mutations on cerebral organoid development. Our data shed light on how lineages and fates are established during cerebral organoid formation. More broadly, our techniques can be adapted in any iPSC-derived culture system to dissect lineage alterations during normal or perturbed development.
Project description:Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.