Project description:An endogenous protease in fish muscle, cathepsin B, was partially purified and characterized from horse mackerel meat. On SDS-PAGE of the purified enzyme under reducing conditions, main protein bands were detected at 28 and 6 kDa and their respective N-terminal sequences showed high homology to heavy and light chains of cathepsin B from other species. This suggested that horse mackerel cathepsin B formed two-chain forms, similar to mammalian cathepsin Bs. Optimum pH and temperature of the enzyme were 5.0 and 50 °C, respectively. A partial cDNA encoding the amino acid sequence of 215 residues for horse mackerel cathepsin B was obtained by RT-PCR and cloned. The deduced amino acid sequence contains a part of light and heavy chains of cathepsin B. The active sites and an N-glycosylation site were conserved across species. We also confirmed that the modori phenomenon was avoided by CA-074, a specific inhibitor for cathepsin B. Therefore, our results suggest that natural cysteine protease inhibitor(s), such as oryzacystatin derived from rice, can apply to thermal-gel processing of horse mackerel to avoid the modori phenomenon. Meanwhile, this endogenous protease may be used for food processing, such as weaning meal and food for the elderly.
Project description:Japanese horse mackerel (Trachurus japonicus) is an important marine resource, and its loss and waste should be reduced. This study aimed to identify the changes in the microflora composition during storage and specific spoilage organisms (SSOs) in Japanese horse mackerel, for spoilage prevention. They were stored at either 20 °C or 4 °C aerobically, and the bacterial viable counts, concentration of total volatile basic nitrogen (TVB-N), and microflora composition for each group were analyzed. Samples stored at 20 °C for 48 h showed similar viable counts to those stored at 4 °C for 168 h; however, the TVB-N concentrations increased at 20 °C, but not at 4 °C. 16S rRNA metagenome analysis showed that Shewanella became dominant genus in the microflora regardless of the storage temperature. However, dominant amplicon sequence variants (ASVs), which are a more detailed classification level than the genus, differed depending on the storage temperatures; therefore, dominant ASVs at 20 °C were assumed to be potential SSOs. Shewanella sp. Strain NFH-SH190041, which was genetically closely related to the dominant ASVs at 20 °C, was isolated, and its spoilage ability was verified. The strain NFH-SH190041 may be considered a novel SSO of Japanese horse mackerel because its 16S rRNA sequence is clearly different from those of known species.
Project description:Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for studying DNA methylation in non-model organisms, we developed an integrated approach for studying DNA methylation differences without a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, zebrafish, carp, and sea bass). Bioinformatically, we developed the RefFreeDMA software (http://RefFreeDMA.computational-epigenetics.org) to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions. These regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.
Project description:We present a genome assembly from an individual Trachurus trachurus (the Atlantic horse mackerel; Chordata; Actinopteri; Carangiformes; Carangidae). The genome sequence is 801 megabases in span. The majority of the assembly, 98.68%, is scaffolded into 24 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl has identified 25,797 protein coding genes.