Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction A ten chip study using PCR amplicons from cloned 16S rRNA genes and from diverse soil 16S rRNAs, with PCR primers specific to the Division Acidobacteria. Each chip measures the signal from 42,194 probes (in triplicate) targeting Acidobacteria division, subdivision, and subclades as well as other bacterial phyla. All samples except one (GSM464591) include 2.5 M betaine in the hybridization buffer. Pair files lost due to a computer crash.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.
Project description:Clostridium perfringens type A is a common source of food poisoning in humans. Vegetative cells sporulate in the small intestinal tract and produce a major pathogenic factor, C. perfringens enterotoxin (CPE) during sporulation. Although sporulation plays a critical role in the pathogenesis of food poisoning, the mechanisms to induce in vivo sporulation remain unclear. Bile salts had been identified to mediate sporulation, and we have confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 co-cultured with human intestinal epithelial Caco-2 cells. In this study, we performed global transcriptome analysis of strain NCTC8239 to elucidate the mechanism to induce sporulation by DCA. From the 55 contigs of C. perfringens strain NCTC8239, 2778 coding sequences were extracted. We designed a DNA probe by utilizing eArray provided by Agilent Technologies. The custom 8Ã15K oligonucleotide array, containing 60 mer oligonucleotide probes for 2,778 genes in strain NCTC8239, 2 bacterial control genes: 16S rRNA and 23S rRNA, and 3 human control genes: beta-2-microglobulin, glucuronidase beta and 18S rRNA, were ordered to Agilent Technologies. Each probe was spotted in five-fold on each microarray. Each strain was run in triplicate or quadruplicate.
Project description:Despite modern approaches to the diagnosis and treatment of acute bowel obstruction (ABO), postoperative mortality ranges from 5 to 32%, and complications occur up 23% of cases. One of the formidable infectious and inflammatory complications of ABO is sepsis. The main component of the development of sepsis in ABO is bacterial translocation (BT). BT is the migration of intestinal bacteria or their products through the intestinal mucosa into the mesenteric lymph nodes and further into normally sterile tissues and organs.
Today there are several methods for detecting BT:
1. direct method - the detection of 16s rRNA (ribosomal ribonucleic acid) in mesenteric lymph nodes (MLN);
2. indirect method - the detection of serum lipopolysaccharide-binding protein (LBP) and presepsin (Soluble CD14 subtype or sCD14-ST).
The aim of this study is to determine the diagnostic and prognostic significance of bacterial translocation as a predictor of the complications development in patients with malignant and benign acute bowel obstruction by assessing the relationship of biomarkers in the systemic circulation (LBP, sCD14-ST) with the detection of microorganism genes (16s rRNA) in mesenteric lymph nodes.
Project description:High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of indigenous bacterial communities BDP wells that can play important role in biogeochemical cycling of elements including As.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.