Project description:Cognitive impairment (CI) is a prevalent neurological condition characterized deficient attention, causal reasoning, learning and/or memory. Many genetic and environmental factors increase risk for CI, and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms of action remain unclear. Here we examine the gut microbiome in response to restricted diet and intermittent hypoxia, known environmental risk factors for CI. Modeling the environmental factors together in mice potentiates CI and alters the gut microbiota. Depleting the microbiome by antibiotic treatment or germ-free rearing prevents the adverse effects of environmental risk on CI, whereas transplantation of the risk-associated microbiome into naïve mice confers CI. Parallel sequencing and gnotobiotic approaches identify the pathobiont Bilophila wadsworthia as enriched by the environmental risk factors for CI and as sufficient to induce CI. Consistent with CI-related behavioral abnormalities, B. wadsworthia and the risk-associated microbiome disrupt hippocampal activity, neurogenesis and gene expression. The CI induced by B. wadsworthia and by environmental risk factors is associated with microbiome-dependent increases in intestinal IFNy-producing Th1 cells. Inhibiting Th1 cells abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.
Project description:The gut microbiota in our intestinal tract metabolizes non-digestible compounds into essential nutrients and signaling molecules (i.e. short-chain fatty acids), affecting our immune system and the development of various human diseases. Ingested environmental contaminants (xenobiotics) can disrupt the bacterial community and enzymatic activity, ultimately influencing the host. Pervasive xenobiotics include bisphenols and poly- and perfluoroalkyl substances (PFAS). Both classes of chemicals have been reported to affect the immune system and cause adverse effects on human metabolism. Since humans are exposed to a complex mixture of environmental contaminants it is critical to evaluate the effects of xenobiotics in mixtures. In our study, an in vitro bioreactor model system based on the simplified human microbiome model (SIHUMIx) was used to investigate the direct effects of either perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) or bisphenol S (BPS) and bisphenol F (BPF) or a combined mixture on the microbiota. We observed an increased production of the short-chain fatty acids (SCFAs) acetate and butyrate following PFAS exposure. A metaproteomics approach revealed changes in molecular pathways in all treatments, including alterations in vitamin and cofactor synthesis and an additional effect on fatty acid synthesis in BPX-treated reactors. This study highlights the need to assess the combined effects of xenobiotics and to better protect public health by considering adverse effects on the microbiome in the risk assessment of environmental chemicals.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Previous studies examining the reproductive health of alligators in Florida lakes indicate that a variety of developmental and health impacts can be attributed to environmental quality and exposures to environmental contaminants. A number of these environmental contaminants have been shown to disrupt normal endocrine signaling. The potential that these environmental toxicants may influence epigenetic status and correlate to the health abnormalities was investigated in the current study. The red blood cell (RBC) (erythrocyte) in the alligator is nucleated so was used as an easily purified marker cell to investigate epigenetic programming. RBCs were collected from adult male alligators captured at three sites in Florida, each characterized by varying degrees of contamination. While Lake Woodruff (WO) has remained relatively pristine, Lake Apopka (AP) and Merritt Island (MI) convey exposures to different suites of contaminants. DNA was isolated and methylated DNA immunoprecipitation (MeDIP) was used to isolate methylated DNA that was then analyzed in a competitive hybridization using a genome-wide alligator tiling array for a MeDIP-Chip analysis. Pairwise comparisons of alligators from AP and MI to WO revealed alterations in the DNA methylome. The AP vs. WO comparison identified 85 differential DNA methylation regions (DMRs) with ≥3 adjacent oligonucleotide tiling array probes and 15,451 DMRs with a single oligo probe analysis. The MI vs. WO comparison identified 75 DMRs with the ≥3 oligo probe and 17,411 DMRs with the single oligo probe analysis. There was negligible overlap between the DMRs identified in AP vs. WO and MI vs. WO comparisons. In both comparisons DMRs were primarily associated with CpG deserts which are regions of low CpG density (1-2 CpG/100bp). Although the alligator genome is not fully annotated, gene associations were identified and correlated to major gene functional categories and pathways. Observations demonstrate that environmental quality is associated with epigenetic programming and status in the alligator. The epigenetic alterations may provide biomarkers to assess the environmental exposures and health impacts on these populations of alligators.
Project description:“Dysbiosis" of the maternal gut microbiome, in response to environmental challenges such as infection, altered diet and stress during pregnancy, has been increasingly associated with abnormalities in offspring brain function and behavior. However, whether the maternal gut microbiome regulates neurodevelopment in the absence of environmental challenge remains unclear. In addition, whether the maternal microbiome exerts such influences during critical periods of embryonic brain development is poorly understood. Here we investigate how depletion, and selective reconstitution, of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibit widespread transcriptomic alterations in the fetal brain relative to conventionally-colonized controls, with reduced expression of several genes involved in axonogenesis. In addition, embryos from microbiome-depleted mothers exhibit deficient thalamocortical axons and impaired thalamic axon outgrowth in response to cell-extrinsic guidance cues and growth factors. Consistent with the importance of fetal thalamocortical axonogenesis for shaping neural circuits for sensory processing, restricted depletion of the maternal microbiome from pre-conception through mid-gestation yields offspring that exhibit tactile hyposensitivity in select sensorimotor behavioral tasks. Gnotobiotic colonization of antibiotic-treated dams with a limited consortium of spore-forming bacteria indigenous to the gut microbiome prevents abnormalities in fetal brain gene expression, fetal thalamocortical axonogenesis and adult tactile sensory behavior associated with maternal microbiome depletion. Metabolomic profiling reveals that the maternal microbiota regulates levels of numerous small molecules in the maternal serum as well as the brains of fetal offspring. Select microbiota-dependent metabolites – trimethylamine N-oxide, 5-aminovalerate, imidazole propionate, and hippurate – sufficiently promote axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with the metabolites during early gestation abrogates deficiencies in fetal thalamocortical axons and prevents abnormalities in tactile sensory behavior in offspring from microbiome-depleted dams. Altogether, these findings reveal that the maternal gut microbiome promotes fetal thalamocortical axonogenesis and select tactile sensory behaviors in mice, likely by signaling of microbially modulated metabolites to neurons in the developing brain.
Project description:Environmental perturbations impact gene transcription. A subset of these transcriptional changes can be passed on to the next generation even in the absence of the initial stimulus. This phenomenon is known as transgenerational inheritance of environmental exposures (TIEE). Previous studies have mainly focused on what is transferred through the germ-line, i.e. DNA methylation, histone modifications, non-coding RNAs, etc. Nevertheless, the germ cells are not the only cells that are passed on from one generation to the next. The microbiota is also transmitted together with the host cells. In this study, we investigated the role of the gut microbiome in TIEE using Drosophila melanogaster as a model organism. We have reared flies in cold and control temperatures, 18 and 25 °C respectively, and looked at the transcriptional pattern in their offspring -grown in control condition- using RNA sequencing. To study the effect of the microbiome, we have carefully exchanged the parental feces introduced to the offspring. We observed genes responsive to thermal alteration, which have preserved their transcriptional status transgenerationally. A subset of these genes, mainly genes expressed in gut, were transcriptionally dependent on which microbiome they acquired. These findings show that the microbiota plays a previously unknown role in TIEE. Our study unveiled a new route for transmittance of environmental memories and thus represents an uncharted area to explore for researchers addressing non-genetic transgenerational inheritance.
Project description:Environmental perturbations impact gene transcription. A subset of these transcriptional changes can be passed on to the next generation even in the absence of the initial stimulus. This phenomenon is known as transgenerational inheritance of environmental exposures (TIEE). Previous studies have mainly focused on what is transferred through the germ-line, i.e. DNA methylation, histone modifications, non-coding RNAs, etc. Nevertheless, the germ cells are not the only cells that are passed on from one generation to the next. The microbiota is also transmitted together with the host cells. In this study, we investigated the role of the gut microbiome in TIEE using Drosophila melanogaster as a model organism. We have reared flies in cold and control temperatures, 18 and 25 °C respectively, and looked at the transcriptional pattern in their offspring -grown in control condition- using RNA sequencing. To study the effect of the microbiome, we have carefully exchanged the parental feces introduced to the offspring. We observed genes responsive to thermal alteration, which have preserved their transcriptional status transgenerationally. A subset of these genes, mainly genes expressed in gut, were transcriptionally dependent on which microbiome they acquired. These findings show that the microbiota plays a previously unknown role in TIEE. Our study unveiled a new route for transmittance of environmental memories and thus represents an uncharted area to explore for researchers addressing non-genetic transgenerational inheritance.