Project description:Whole transcriptome assessment of the Yersinia pseudotuberculosis strain YPIII. The Y. pseudotuberculosis rovA regulon was determined in Yersinia minimal minimum developed for the study. RovA is a key regulator for Yersinia virulence.
Project description:Whole transcriptome assessment of the Yersinia pseudotuberculosis strain YPIII. The Y. pseudotuberculosis csrA regulon was determined in Yersinia minimal minimum developed for the study. CsrA is a key regulator coordinating virulence and metabolism.
Project description:Whole transcriptome assessment of the Yersinia pseudotuberculosis strain YPIII. The Y. pseudotuberculosis crp regulon was determined in Yersinia minimal minimum developed for the study. Crp is a key regulator coordinating virulence and metabolism.
Project description:Yersinia pestis, the etiologic agent of plague, emerged as a flea-borne pathogen only within the last 6,000 years. Just five simple genetic changes in the Yersinia pseudotuberculosis progenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropod-borne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performed in vivo transcriptional profiling of Y. pestis, Y. pseudotuberculosis wild-type (unable to form biofilm in the flea foregut), and a Y. pseudotuberculosis mutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious bloodmeal. Surprisingly, the Y. pseudotuberculosis mutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change expression levels of the hms genes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. The Y. pseudotuberculosis mutant uniquely expressed much higher levels of one of the Yersinia Type VI secretion systems (T6SS-4) in the flea, and this locus was required for flea blockage by Y. pseudotuberculosis, but not by Y. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing related genes, transcriptional regulators, and stress response genes were evident during flea infection. The results provide insights into how Y. pestis has adapted to life in its flea vector and point to evolutionary changes in the regulation of biofilm development pathways in these two closely related species
Project description:Whole transcriptome assessment of the Yersinia pseudotuberculosis strain YPIII. The Y. pseudotuberculosis rovA regulon was determined in Yersinia minimal minimum developed for the study. RovA is a key regulator for Yersinia virulence. Y. pseudotuberculosis YPIII or the isogenic rovA mutant strain were cultivated at 25M-BM-0C under aeration on a rotary shaker. First pre-cultures were grown in a 1:1 mixture of HAMM-bM-^@M-^Ys F-12 Nutrient Mixture (Invitrogen, Carlsbad, US) and liquid DMEM medium (Biochrom, Berlin, DE). Second pre-cultures and main cultures were grown in a Yersinia minimal medium (YMM). The analysis comprised three biological replicates for each strain. In addition, samples, taken at three different time points of the exponential growth phase, were used to validate constant expression during the cultivation. Total RNA was extracted using SV Total RNA Isolation System (Promega). The samples were treated with RNase-free DNase (Roche Applied Science) and the quality of the RNA was confirmed by the lack of PCR amplification of the hns gene and by using an Agilent 2100 Bioanalyzer.
Project description:The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. pseudotuberculosis. Aiming to identify Tat dependent pathways and phenotypes of relevance for in vivo infection, we analysed the global transcriptome of parental and ∆tatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ∆tatC mutant were seen at 26°C during stationary phase growth and these included the altered expression of genes related to virulence, stress responses and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat dependent phenotypes including decreased YadA expression, impaired growth under iron-limiting and high copper concentrations as well as sensitivity to acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypes of the Tat deficient strain were generally more pronounced than for the individual mutants of the genes encoding the specific Tat substrates. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection.
Project description:The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. pseudotuberculosis. Aiming to identify Tat dependent pathways and phenotypes of relevance for in vivo infection, we analysed the global transcriptome of parental and ∆tatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ∆tatC mutant were seen at 26°C during stationary phase growth and these included the altered expression of genes related to virulence, stress responses and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat dependent phenotypes including decreased YadA expression, impaired growth under iron-limiting and high copper concentrations as well as sensitivity to acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypes of the Tat deficient strain were generally more pronounced than for the individual mutants of the genes encoding the specific Tat substrates. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection.
Project description:The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. pseudotuberculosis. Aiming to identify Tat dependent pathways and phenotypes of relevance for in vivo infection, we analysed the global transcriptome of parental and ∆tatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ∆tatC mutant were seen at 26°C during stationary phase growth and these included the altered expression of genes related to virulence, stress responses and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat dependent phenotypes including decreased YadA expression, impaired growth under iron-limiting and high copper concentrations as well as sensitivity to acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypes of the Tat deficient strain were generally more pronounced than for the individual mutants of the genes encoding the specific Tat substrates. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection.
Project description:The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. pseudotuberculosis. Aiming to identify Tat dependent pathways and phenotypes of relevance for in vivo infection, we analysed the global transcriptome of parental and ∆tatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ∆tatC mutant were seen at 26°C during stationary phase growth and these included the altered expression of genes related to virulence, stress responses and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat dependent phenotypes including decreased YadA expression, impaired growth under iron-limiting and high copper concentrations as well as sensitivity to acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypes of the Tat deficient strain were generally more pronounced than for the individual mutants of the genes encoding the specific Tat substrates. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection.
Project description:Whole transcriptome assessment of the Yersinia pseudotuberculosis strain YPIII. The Y. pseudotuberculosis csrA regulon was determined in Yersinia minimal minimum developed for the study. CsrA is a key regulator coordinating virulence and metabolism. Y. pseudotuberculosis YPIII or the isogenic csrA mutant strain were cultivated at 25M-BM-0C under aeration on a rotary shaker. First pre-cultures were grown in a 1:1 mixture of HAMM-bM-^@M-^Ys F-12 Nutrient Mixture (Invitrogen, Carlsbad, US) and liquid DMEM medium (Biochrom, Berlin, DE). Second pre-cultures and main cultures were grown in a Yersinia minimal medium (YMM). The analysis comprised three biological replicates for each strain. In addition, samples, taken at three different time points of the exponential growth phase, were used to validate constant expression during the cultivation. Total RNA was extracted using SV Total RNA Isolation System (Promega). The samples were treated with RNase-free DNase (Roche Applied Science) and the quality of the RNA was confirmed by the lack of PCR amplification of the hns gene and by using an Agilent 2100 Bioanalyzer.